• Title/Summary/Keyword: Ceramic-glass

Search Result 1,315, Processing Time 0.036 seconds

Development of Ultra-high Capacitance MLCC through Low Temperature Sintering (저온소결을 통한 초고용량 MLCC 개발)

  • Sohn, Sung-Bum;Kim, Hyo-Sub;Song, Soon-Mo;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • It is necessary to minimize the thickness of Ni inner electrode layer and to improve the coverage of inner electrode, for the purpose of developing the ultra high-capacity multi layered ceramic capacitor (MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the relationship between dielectric properties of MLCC and batch condition such as mixing and milling methods was investigated in the $BaTiO_3$(BT)-Dy-Mg-Ba system with borosilicate glass as a sintering agent. In addition, several chip properties of MLCC manufactured by low temperature sintering were compared with conventionally manufactured MLCC. It was found that low temperature sintered MLCC showed better DC-bias property and lower aging rate. It was also confirmed that the thickness of Ni inner electrode layer became thinner and the coverage of inner electrode was improved through low temperature sintering.

Preparation of p-type transparent semiconductor $SrCu_2O_2$ thin film by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의한 p형 투명 반도체 $SrCu_2O_2$ 박막의 제조)

  • Kim, Sei-Ki;Seok, Hye-Won;Lee, Mi-Jae;Choi, Byung-Hyun;Jeong, Won-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.47-47
    • /
    • 2008
  • P-type transparent semiconductor $SrCu_2O_2$ thin films have been prepared by RF sputtering using low-alkali glass for LCD and quartz as substrates. Single phase of $SrCu_2O_2$ powder was obtained by heating a stoichiometric mixture of CuO and $SrCO_3$ at 1223K for 96h under N2 gas flow, and target was fabricated at 1243K for 24h. Room temperature conductivity of the sintered body was about 0.02S/cm, and the activation energy in the temperature range of $-50^{\circ}C$~RT and RT~$150^{\circ}C$ were 0.18eV, 0.07eV, respectively. Effects of deposition pressure and post-annealing temperature on the electrical and optical properties of the obtained thin film have been investigated.

  • PDF

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Review of clinical studies applying yttrium tetragonal zirconia polycrystal-based esthetic dental restoration (치과용 지르코니아로 제작된 심미보철물의 임상적 예후에 관한 문헌고찰)

  • Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.307-312
    • /
    • 2020
  • Application of ceramic materials for fabrication of dental restoration materials has been a focus of interest in the field of esthetic dentistry. The ceramic materials of choice are glass ceramics, spinel, alumina, and zirconia. The development of yttrium tetragonal zirconia polycrystal (YTZP)-based systems is a recent addition to all-ceramic systems that have high strength and are used for crowns and fixed partial dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM)-produced, YTZP-based systems are popular with respect to their esthetic appeal for use in stress-bearing regions. The highly esthetic nature of zirconia and its superior physical properties and biocompatibility have enabled the development of restorative systems that meet the demands of today's patients. Many in vitro trials have been performed on the use of zirconia; however, relatively fewer long-term clinical studies have been published on this subject. The use of zirconia frameworks for long-span fixed partial dentures is currently being evaluated; in the future, more in vivo research and long-term clinical studies are required to provide scientific evidence for drawing solid guidelines. Further clinical and in vitro studies are required to obtain data regarding the long-term clinical use of zirconia-based restorations.

Gas Permeation Properties of the Ceramics-Silicone Composite Membranes (세라믹-실리콘 복합막의 기체투과 특성)

  • Hwang, Seung-No;Yang, Jae-Gun;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.374-381
    • /
    • 1997
  • Ceramic membranes are prepared by using molding method of the glass materials, ceramic-silicone composite membranes are synthesized with immersing silicone compound of sodiumate, $S_3$-Al, S3and we investigated the properties of gas permeation. Ceramic membranes and ceramic-sodiumate membranes that has been prepared were identified as porous structure and ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes were showed with dense structure by immersion of silicone compounds. Gas permeation properties through the ceramic membranes and ceramic-sodiumate membranes decreased with increasing temperature and linearly increased with increasing pressure, ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes increased with increasing temperature and pressure effect was low. Permeation rate was found out high value with ceramic membranes and in order of ceramic-sodiumate membranes, ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes, but selectivity reversed in the order. Gas permeation mechanism through the ceramic membranes and ceramics-sodiumate composite membrane decreased with increasing temperature, suggesting an Knudsen diffusion mechanism, but ceramic-$S_3$-Al composite membranes and ceramic-$S_3$ composite membranes showed an activated diffusion by which gas permeation rates through the membranes increased with an increase in temperature.

  • PDF

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.

Development of Red CaAlSiN3:Eu2+ Phosphor in Glass Ceramic Composite for Automobile LED with High Temperature Stability (고온 안정성이 우수한 자동차 LED용 Red CaAlSiN3:Eu2+ 형광체/Glass 세라믹 복합체 개발)

  • Yoon, Chang-Bun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2018
  • Red phosphor in glasses (PiGs) for automotive light-emitting diode (LED) applications were fabricated with 620-nm $CaAlSiN_3:Eu^{2+}$ phosphor and Pb-free silicate glass. PiGs were synthesized and mounted on high-power blue LED to make a monochromatic red LED. PiGs were simple mixtures of red phosphor and transparent glass powder. After being fabricated with uniaxial press and CIP at 300 MPa for 20 min, the green bodies were thermally treated at $550^{\circ}C$ for 30 min to produce high dense PiGs. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30% phosphor had a full sintered density. Changes in photoluminescence spectra and color coordination were studied by varying the thickness of plates that were mounted after optical polishing. As a result of the optical spectrum and color coordinates, PiG plate with $210{\mu}m$ thickness showed a color purity of 99.7%. In order to evaluate the thermal stability, the thermal quenching characteristics were measured at temperatures of $30{\sim}150^{\circ}C$. The results showed that the red PIG plates were 30% more thermally stable compared to the AlGaInP red chip.

Effect of calcination temperature on mechanical properties of spinel-glass dental composites (하소온도에 따른 인공치관용 스피넬-유리 복합체의 기계적 특성)

  • 이득용;이준강;김대준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.234-239
    • /
    • 2002
  • The spinel was calcined at temperatures in the range of $1000^{\circ}C$ to $1300^{\circ}C$ with $100^{\circ}C$ interval to evaluate the effect of calcination temperature on mechanical properties of spinel-glass dental composites. Although the average particle size of spinel calcined at temperatures from $1000^{\circ}C$ to $1200^{\circ}C$ was within 2.8~3.0 $\mu\textrm{m}$, the spinel calcined at $1300^{\circ}C$ was 4.66 $\mu\textrm{m}$ due to abnormal grain growth. Shrinkage and pore size of the spinel preform decreased and increased, respectively, as calcination temperature increased, indicating that the calcination temperature was significant to the powder compaction and the densification of the composites as a result of particle size and distribution. The optimum strength and the fracture toughness of the composite calcined at $1200^{\circ}C$ were 284$\pm$40 MPa, 2.5$\pm$0.1 MPaㆍ$m^{1/2}$ respectively. Optical experimental results showed that transmittance of the spinel-glass composite in the visible region was twice higher than that of the alumina-glass composite, suggesting that the spinel-glass composites possessed better aesthetic properties for all-ceramic dental crown application.

Microwave Dielectric Properties of Ca(Li1/4Nb3/4)O3-CaTiO3 Ceramics added with Zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 Ca(Li1/4Nb3/4)O3-CaTiO3 세라믹스의 마이크로파 유전 특성)

  • Yoon Sang-Ok;Kim Kwan-Soo;Jo Tae-Hyun;Shim Sang-Heung;Park Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.524-530
    • /
    • 2006
  • $xCa(Li_{1/4}Nb_{3/4})O_{3}-(1-x)CaTiO_{3}$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to low-temperature co-fired ceramic(LTCC) technology. The addition of $5{\sim}15wt%$ ZBS glass ensured successful sintering below $900\;^{\circ}C$. In general, increased addition of ZBS glass increased sinterability but it decreased the quality factor($Q{\times}f_{0}$) significantly due to the formation of an excessive liquid and second phases. As for the addition of $CaTiO_3$, the dielectric constant(${\epsilon}_r$) and temperature coefficient of resonant frequency(${\tau}_f$) increased, while the quality factor($Q{\times}f_{0}$) did not show an apparent change. The sintered $0.9Ca(Li_{1/4}Nb_{3/4})O_{3}-0.1CaTiO_{3}$ specimen at $900\;^{\circ}C$ with 10 wt% ZBS glass demonstrated 39.6 in dielectric constant(${\epsilon}_r$), 4,400 in quality factor$(Q{\times}f_{0}),\;and\;-11ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF