• Title/Summary/Keyword: Ceramic-glass

Search Result 1,315, Processing Time 0.026 seconds

Effect of HF Treatment on the Crystallization Behavior of the Glass Containing Coal Bottom Ashes (석탄바닥재가 포함된 유리의 결정화 특성에 미치는 HF 처리 효과)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • The crystallization behavior and microstructural change of the glass-ceramics were analyzed as a function of concentration and etching time of the HF solution in order to enhance the degree of crystallinity induced by heterogeneous nucleation of glass of bottom ash containing 15 wt% $Li_2O$. The nucleation site seemed to be generated where the Si ion was eluted. The main crystal phases in the glass-ceramics fabricated in this study were $\beta$-spodumene and $Li_2SiO_3$. The specimens etched with HF of 0.5 vol% within 0~60 seconds showed increased crystalline peak intensities in XRD pattern with etching time compared to no-etched one. Also the crystal size and crystal occupancy in the glass matrix observed by SEM were increased with etching time. For the glass-ceramics etched with 1.0 and 2.0 vol% HF solution, the etching time over 10 s was not effective to increase the crystallinity. From this study, it was found that the glass-ceramics with the higher crystallinity could be obtained by HF-etching followed by heat treatment process, even though the nucleating agent or 2-stages thermal treatment process were not used.

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (II) Properties of Cordierite Glass-Ceramics Containing CeO2 (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(II) $CeO_2$를 첨가한 Cordierite계 결정화유리의 특성)

  • 이근헌;김병호;임대순;정재현
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.827-835
    • /
    • 1992
  • The effects of CeO2 on the properties of cordierite-based glass-ceramics and its applicability to low firing temperature substrate were examined. Glass-ceramics were prepared by sintering the glass powder compacts at 900~100$0^{\circ}C$ for 3 h. Density, bending strength, dielectric constant and thermal expansion coefficient of the glass-ceramics were measured as functions of CeO2 contents and sintering temperatures. By adding CeO2, dense glass-ceramics were obtained below 100$0^{\circ}C$. dielectric constant and bending strength were more dependent on the porosity of glass-ceramics containing 5 wt% CeO2, sintered at 100$0^{\circ}C$ for 3 h, were as follows; relative density is 95.3%, bending strength is 178$\pm$11 MPa, dielectric constant is 4.98$\pm$0.20 (at 1 MHz) and thermal expansion coefficient is 33.7$\times$10-7/$^{\circ}C$. Therefore, the glass-ceramics containing 5 wt% CeO2 appeared to be suitable for low firing temperature substrate of electronic devices.

  • PDF

Effect of SiO2/B2O3 ratio on Li ion conductivity of a Li2O-B2O3-SiO2 glass electrolyte

  • Kim, Young Han;Yoon, Mi Young;Lee, Eun Jung;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.37-41
    • /
    • 2012
  • A lithium ion conducting borosilicate glass was fabricated by a conventional melt quenching technique from a mixture of Li2CO3, B2O3 and SiO2 powders. The Li ion conductivity of the lithium borosilicate glasses was evaluated in terms of the SiO2/B2O3 ratio. In the Li2O-B2O3-SiO2 ternary glass, the glass forming region decreases with an increasing Li2O content. At the same Li2O, the crystallization tendency of the glass samples increases with the SiO2/B2O3 ratio, resulting in a reduced glass forming region in the Li2O-B2O3-SiO2 ternary glass. The electrical conductivity moderately depends on the SiO2/B2O3 ratio in the Li2O-B2O3-SiO2 ternary glass. The conductivity of the glasses slightly increases with the SiO2/B2O3 ratio. The observed phenomenon can be explained by the modification of the glass structure as a function of the SiO2 content.

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.355-362
    • /
    • 2024
  • AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.

A study on the fabrication of foamed glass by using refused coal ore and its physical properties (석탄 폐석을 이용한 발포유리의 제조 및 물리적 특성 연구)

  • Lim, Tae-Young;Ku, Hyun-Woo;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.266-273
    • /
    • 2011
  • Foamed glass was fabricated by using glass powder and foaming agents. For the glass powder, we used sodalime glass which's manufactured by using refused coal ore obtained as by-product from Dogye coal mine in Samcheok. And for the foaming agents, we used Calcium carbonate, Calcium phosphate and powder of shale type refused coal ore itself which has high content of carbon materials. We additionally used liquid binder for forming, and mixed together. And we formed rectangular shape and treated $800^{\circ}C$ for 20 min in an electrical furnace. The various kinds of foam glass samples were fabricated according to the kinds of foaming agents. The physical properties of samples, as specific gravity and compressive strength, were measured. Pore structure of each samples were investigated too. Foam glass with specific gravity of 0.4~0.7 and compressive strength of 30~72 kg/$cm^2$. Especially we get satisfying foam glass sample with low specific gravity of 0.47 and high compressive strength of 72 kg/$cm^2$ by the use of liquid calcium phosphate as foaming agent. It also had small and even shape of pore structure. Therefore, it is concluded that refused coal ore can be used for raw materials to manufacture secondary glass products such as a foamed glass panel for construction and industrial materials.

Evaluation of dynamic fracture characteristics for advanced glass ceramics using strain gage method (스트레인게이지법을 사용한 그라스세라믹의 동적 파괴특성평가)

  • Rho Nam-Su;Kim Jae-Hoon;Lee Young-Shin;Kim Duck Hoi;Moon Soon-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.112-115
    • /
    • 2005
  • The objectives of this study are to evaluate the dynamic fracture toughness of advance glass ceramics(MACOR glass-filled ceramic, Corning Glass Works) for dome port cover of the ramjet. Static and dynamic fracture toughness tests are performed using strain gage method in the variation of notch radii.

  • PDF

Optimization of Glass Wafer Dicing Process using Sand Blast (Sand Blast를 이용한 Glass Wafer 절단 가공 최적화)

  • Seo, Won;Koo, Young-Mo;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of $500{\mu}m's$ thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence.

A Study on the Glass Strengthened in Salt Solution by Chemical Ion Exchange (염 용액에서의 화학적 이온교환 강화유리에 관한 연구)

  • 이종근;김인섭
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.335-342
    • /
    • 1987
  • There were several numbers of studies on chemically strengthening glass. Most of them were strengthened in molten salt bath below transformation range of glass. Apart from them, this study used solution hydration technique by Autoclave. After determining proper concentration of AgNO3 salt solution, experimental condition varied from 4hrs to 16hrs at relatively low temperature (180, 200, 220$^{\circ}C$). The results showed that the Soda-Lime-Silica glass could be strengthened by diffusion mechanism without influence of water above 15% salt solution. Because of Ag+ ion penetration in glass surface, yellow color appeared and decreased transmittance at visible range. Modulus of rupture was increased with the amount of exchange and brittleness was decreased.

  • PDF

Studies on the Glaze for High Expansion Glass Ceramics (고팽창 결정화 유리의 유약에 관한 연구)

  • 박용완;강은태;박찬성;전문덕
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.213-216
    • /
    • 1980
  • A glass-ceramics material of composition %SiO_2$: 38.50, $Al_2O_3$: 26.00, $Na_2O$: 18.00, CaO: 6.00, MgO: 4.00, $TiO_2$: 7.50 was strengthened by coating a series of glazes$(SiO_2-B_2O_3-Al_2O_3-CaO-PbO-Na_2O-)$, which has lower thermal expansion coefficient than that of the glass-ceramics. The thermal expansion coefficient of the glazes ranges $80~90{\times}10^{-7}$cm/cm/$^{\circ}C$, whereas that of the glass-ceramics is $115{\times}10^{-7}$cm/cm/$^{\circ}C$. The glass-ceramics was identified to be composed of nepheline, carnegieite low form, and meta sodium silicate crystal by X-ray diffraction phase analysis. The glaze, having lower melting point and appropriate thermal expansion coefficient, was tried to be stable and good at secondary heat treatment.

  • PDF