• Title/Summary/Keyword: Ceramic oxides

Search Result 250, Processing Time 0.026 seconds

Preparation and properties of multiferroic bismuth iron oxides

  • Nam, Joong-Hee;Joo, Yong-Hui;Cho, Jeong-Ho;Chun, Myoung-Pyo;Kim, Byung-Ik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.66-69
    • /
    • 2009
  • The compositional dependence of bismuth iron oxides and effect of La-substitutions in the structure of $BiFeO_3$ compounds were investigated, which compounds were synthesized by conventional ceramic processing. It is shown that some of bismuth iron oxides including $BiFeO_3$ show the narrow single phase region. The effect of La-doping in $BiFeO_3$ was presented as disappearance of many impurity phases of Bi-Fe-O compounds. The lower electrical resistivity was obtained as those compositions of Fe deficient region and La-doped $BiFeO_3$. The saturation magnetization of La-doped $BiFeO_3$ was increased with La content. The dielectric dispersion was also observed for those Bi-Fe-O compounds with Fe deficient and La-doped $BiFeO_3$ at low frequencies under 1 kHz.

High Temperature Vaporization of the High Melting Point Oxides (고융점 산화물에 대한 고온 증발)

  • 이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1978
  • The vapor pressure of the high melting point oxides, MgO, $Cr_2O_3$, and $MgCr_2O_4$ were measured over the temperature range 1300 to 175$0^{\circ}C$ under vacuum <$10^{-5}$ torr by the Langmuir and the Knudsen method. The Langmuir vapor pressure was increased with elevating temperature and with increasing porosity of the specimen. The difference between the vapor preseures measured by the Langmuir and the Knudsen method was decreased with elevating temperature and the Langmuir vapor pressure finally reached the Knudsen vapor pressure at the melting point when extrapolated. The vapor pressure of other important oxides with high melting points, i.e., $Al_2O_3$, $ThO_2$, $Yb_2O_3$ and $Y_2O_3$ were cited from the references. The Langmuir and the Knudsen vapor pressure of these oxides also showed the same results, i.e., they showed the same value at their melting points.

  • PDF

The Effects of the Electron Reflecting Layer Screen-printed with the Lead Tungsten Oxides on the Shadow Mask in CRT

  • Kim, Sang-Mun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.113-117
    • /
    • 2003
  • To reduce the doming of the shadow mask due to thermal expansion and to prevent the color discrepancy, the electron reflecting layer with lead tungsten oxides on the electron gun side of shadow mask was formed by screen printing method and doming property was evaluated in CRT. First, the lead tungsten oxides were prepared by calcining the mixture of lead oxide and tungsten oxide above 600$^{\circ}C$. Second, the paste which has the anti-doming composition including the lead tungsten oxides was coated by screen-printing method. As a result, the doming of the shadow mask was reduced about from 30 to 45%.

Reaction Iron Oxide and Magnesium Oxide in Ceramics Body with Glaze (도자기 소지구성 산화철, 산화마그네슘이 유약과의 반응)

  • Jung, Seok;Hwang, Dong-Ha;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.363-369
    • /
    • 2014
  • This is the study on diffusion of ceramic body oxide compounds to glaze. For ceramic bodies, no ferrous oxides contain white ware, celadon, and 3 wt% iron oxides contained white ware was used in this experiment. These ceramic bodies were glazed by transparency glaze, iron oxides contained glaze, and glaze made by pine tree ash that treated in 1240 degree, under reduction condition for an hour. An electron probe microanalyzer(EPMA) was used to study diffusion of oxides and to calculate distance of ceramics bodies. As a result, only iron oxide and magnesium oxide from the body diffused to glaze, and also made a band which shown very thin layer of iron oxide and magnesium oxide between the body and glaze. The densest band of iron oxide formed 100 to $150{\mu}m$ in the glaze, and the densest band of magnesium oxide was found 50 to $100{\mu}m$ in the glaze. Therefore, it could be concluded that iron oxide in the body is diffused to the glaze and it affects the color of glaze, even though iron oxide exists in the glaze. Furthermore, the thickness of the glaze has an effect on the color of celadon.

Oxygen Potential Gradient Induced Degradation of Oxides

  • Martin, Manfred
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In many applications of functional oxides originally homogeneous materials are exposed to gradients in the chemical potential of oxygen. Prominent examples are solid oxide fuel cells (SOFCs) or oxygen permeation membranes (OPMs). Other thermodynamic potential gradients are gradients of electrical potential, temperature or uni-axial pressure. The applied gradients act as generalized thermodynamic forces and induce directed fluxes of the mobile components. These fluxes may lead to three basic degradation phenomena of the materials, which are kinetic demixing, kinetic decomposition, and morphological instabilities.

Analysis of phase formation behavior of YSZ-based composites according to rare earth and other oxide doping amounts (희토류 및 기타 산화물 Doping 양에 따른 YSZ 기반 복합소재의 상형성 거동 분석)

  • Choi, Yong Seok;Lee, Gye Won;Jeon, Chang Woo;Nahm, Sahn;Oh, Yoon Suk
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.368-375
    • /
    • 2022
  • YSZ (Yttria Stabilized Zirconia) is used as a thermal barrier coating material for gas turbines due to its low thermal conductivity and high fracture toughness. However, the operating temperature of the gas turbine is rising according to the market demand, and the problem that the coating layer of YSZ is peeled off due to the volume change due to the phase transformation at a high temperature of 1400℃ or higher is emerging. To solve this problem, various studies have been carried out to have phase stability, low thermal conductivity, and high fracture toughness in a high temperature environment of 1400℃ or higher by doping trivalent and tetravalent oxides to YSZ. In this study, the monoclinic phase formation behavior and crystallinity were comparatively analyzed according to the total doping amount of oxides by controlling the doping amounts of Sc2O3 and Gd2O3, which are trivalent oxides, and TiO2, which are tetravalent oxides, in YSZ. Through comparative analysis of monoclinic phase formation and crystallinity, the thermal conductivity of the thermal barrier coating layer according to the amount of doping was predicted.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Adsorption of Ruthenium on the alkaline Earth Metal Compounds (알카리토금속 화합물에 의한 루테늄의 흡착)

  • 류경옥;문세기;이근범
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 1982
  • Many materials such as silica gel, metallic oxide, activated alumina and alkaline earth metal carbonates were employed as filter media for gaseous oxides of ruthenium volatilized during high level radioactive waste processing. The adsorption efficiency of ruthenium on these materials was evaluated. For the purpose of observing behavior of ruthenium oxides, thermogravimetric analysis of ruthenium oxide in a stream of oxygen was carried out. The rate of volatilization was proportional to the square root of oxygen partial pressure, and increased exponentially with temperature. At $650^{\circ}C$, gaseous ruthenium oxides showed a strongly marked effect of deposition. Of all the materials available, calcium oxide proved to be the best that could be used to adsorb ruthenium.

  • PDF

Effects of Additives and Atmospheres on the Grain Growth of TiO2 Ceramics (분위기와 첨가제가 TiO2 세라믹스의 입자성장에 미치는 영향)

  • 박정현;최헌진;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.390-398
    • /
    • 1988
  • Effects of atmospheres and adidtives on the grain growth of TiO2 ceramics were investigated. In the range of 1300~140$0^{\circ}C$, grain growth was increased in CO2 as compared with O2 atmosphere and the grain boundary migration activation energy was lower than the diffusion activation energy of oxygen ion in TiO2. Also, in the case of addition of oxides, the grain growth was increased by oxides acting as a acceptor andinhibited by oxides acting as a donor. From the above results, when the oxygen vacancy concentration was increased, the intrinsic grain boundary mobility was increased and the pore drag force was decreased due to the rapid densification. Also it seems that the pore was migrated by the surface diffusion rather than lattice diffusion.

  • PDF

Development of Novel Techniques for Determining the Oxygen Tracer Diffusion Coefficients in Oxides II - Measurements of the Depth Profiles of $^{18}O$ Concentration in the solid Samples by Raman Spectroscopy (산화물에서의 산소추적자확산계수를 결정하는 새로운 방법의 개발 II - 라만분광법에 의한 고체시료 중의 시간에 따른 $^{18}O$ 농도변화 측정 -)

  • 김병국;마하구찌히로오;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1459-1466
    • /
    • 1994
  • A novel technique for determining the oxygen tracer diffusion coefficients in oxides was developed. After the 16O-18O solid-gas exchange reactions between 16O in the oxides and 18O in the ambient gas, Raman spectra of the cross sections of oxide samples were measured in a spatial resolution of 5 ${\mu}{\textrm}{m}$. From thus obtained Raman spectra, depth profiles of 18O concentration in the oxide samples were calculated. The oxygen tracer diffusion coefficients and the surface exchange coefficients were determined under the assumptions that samples are semi-infinite slab and that the surface exchange reactionsare not negligible. The oxygen tracer diffusion coefficient of 2.8 mol% Y2O3-containing tetragonal ZrO2 polycrystals, 8 mol% Y2O3-containing ZrO2 polycrystals, and 10 mol% Y2O3-containing cubic ZrO2 single crystals (along the a axis) are as follows.

  • PDF