Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.1.029

Oxygen Potential Gradient Induced Degradation of Oxides  

Martin, Manfred (Institute of Physical Chemistry, RWTH Aachen University)
Publication Information
Abstract
In many applications of functional oxides originally homogeneous materials are exposed to gradients in the chemical potential of oxygen. Prominent examples are solid oxide fuel cells (SOFCs) or oxygen permeation membranes (OPMs). Other thermodynamic potential gradients are gradients of electrical potential, temperature or uni-axial pressure. The applied gradients act as generalized thermodynamic forces and induce directed fluxes of the mobile components. These fluxes may lead to three basic degradation phenomena of the materials, which are kinetic demixing, kinetic decomposition, and morphological instabilities.
Keywords
Oxygen potential gradient; Degradation; Kinetic demixing; Kinetic decomposition; Morphological instability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Martin, "Cation Demixing in an Oxygen Ion Conductor exposed to an Oxygen Potential Gradient," pp 308-316, in SOFC-VI, PV 1999-19, The Electrochemical Society Proceedings Series, Ed. by S. C. Singhal, Pennington, NJ, 1999.
2 M. Martin, "Electrotransport and Demixing in Oxides," Solid State Ionics, 136-137 331-337 (2000).   DOI
3 M. Kilo, M.A. Taylor, Ch. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, "Cation self-diffusion of $^{44}Ca$, $^{88}Y$ and $^{96}Zr$ in Single-crystalline Calcia- and Yttria-doped Zirconia," J. Appl. Phys., 94 7547-52 (2003).   DOI   ScienceOn
4 O. Schulz, M. Martin, C. Argirusis, and G. Borchardt, "Cation Tracer Diffusion of $^{138}La$, $^{84}Sr$ and $^{25}Mg$ in Polycrystalline $La_{0.9}Sr_{0.1}Ga_{0.9}Mg_{0.1}O_3$," Phys. Chem. Chem. Phys., 5 2308-13 (2003).   DOI   ScienceOn
5 N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stoever, "Materials and Manufacturing Technologies for Solid Oxide Fuel Cells," J. Mater. Sci., 45 3109-135 (2010).   DOI   ScienceOn
6 S. Diethelm, J. Sfeir, F. Clemens, J. van Herle, and D. Favrat, "Planar and Tubular Perovs-kite-type Membrane Reactors for the Partial Oxidation of Methane to Syngas," J. Solid State Electrochem., 8 611-17 (2004).
7 B. Wang, B. Zydorczak, D. Poulidi, I.S. Metcalfe, and K. Li, "A Further Investigation of the Kinetic Demixing/decomposition of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Separation Membranes," J. Membrane Science, 369 526-35 (2011).   DOI   ScienceOn
8 M. Martin and H. Schmalzried, "Cobaltous Oxide in an Oxygen Potential Gradient: Morphological Stability of the Phase Boundaries," Ber. Bunsenges. Phys. Chem., 89 124-30 (1985).   DOI   ScienceOn
9 P. Tigelmann and M. Martin, "Monte Carlo Simulation of Surface Structures During Oxide Reduction," Physica A, 191 240-47 (1992).   DOI
10 F.A. Nicols, "Kinetics of Diffusional Motion of Pores in Solids," J. Nucl. Mater., 30 143-65 (1969).   DOI   ScienceOn
11 S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
12 J. Janek, M. Martin, and H.-I. Yoo, "Electrotransport in Ionic Crystals: I. Application of Liquid Electrolyte Theory," Ber. Bunsenges. Phys. Chem., 98 655-664 (1994).   DOI   ScienceOn
13 O. Teller and M. Martin, "Kinetic demixing of (CoNi)O in an Electrical Field," Solid State Ionics, 101-103 475-478 (1997).   DOI
14 O. Teller and M. Martin, "Steady State Demixing of Oxid Solid Solutions in an Electrical Potential Gradient," Electrochemistry, 68 294-297 (2000).
15 H. Schmalzried, W. Laqua, and P.L. Lin, "Crystallic Oxide Solid Solutions in Oxygen Potential Gradients," Z. Naturforsch., 34a 192-99 (1979).
16 M. Martin and R. Schmackpfeffer, "Demixing of Doped Oxides: Influence of Defect Interactions," Solid State Ionics, 72 67-71 (1994).   DOI
17 H.-I. Yoo, J.-H. Lee, M. Martin, J. Janek, and H. Schmalzried, "Experimental Evidence of the Interference Between Ionic and Electronic Flows in an Oxide with Prevailing Electronic Conduction," Solid State Ionics, 67 317-22 (1994).   DOI
18 A.B. Lidiard, "Impurity Diffusion in Crystals (Mainly Ionic Crystals with the Sodium Chloride Structure)," Phil. Mag., 46 1218-37 (1955).   DOI
19 A. R. Allnatt and A. B. Lidiard, "Statistical Theories of Atomic Transport in Crystalline Solids," Rep. Prog. Phys., 50 373-472 (1987).   DOI   ScienceOn
20 R. Schmackpfeffer and M. Martin, "Tracer Diffusion and Defect Structure in Ga-doped CoO," Phil. Mag. A, 68 747-65 (1993).   DOI   ScienceOn
21 H. Schmalzried and W. Laqua, "Multicomponent Oxides in Oxygen Potential Gradients," Oxid. Metals, 15 339-53 (1981).   DOI
22 U. Brinkmann and W. Laqua, "Decomposition of Fayalite ($Fe_2SiO_4$) in an Oxygen Potential Gradient at 1418 K," Phys. Chem. Minerals, 12 283-90 (1985).   DOI   ScienceOn
23 U. Koops, D. Hesse, and M. Martin, "High-Temperature Oxidation of CoGa: Influence of the Crystallographic Orientation on the Oxidation Rate," J. Mater. Res., 17 2489-98 (2002).   DOI   ScienceOn
24 B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 345-52 (2001).   DOI   ScienceOn
25 J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa, "Mixed Ionic.electronic Conducting (MIEC) Ceramic-based Membranes for Oxygen Separation," J. Membrane Science, 320 13-41 (2008).   DOI   ScienceOn
26 H. J. Grabke and M. Schutze (Eds.), Oxidation of Intermetallics, Wiley-VCH, Weinheim, 1997.
27 E. Ryshkewitch and D. W. Richerson, Oxide Ceramics, Academic, Orlando, 1985.
28 H. Kishi, Y. Mizuno, and H. Chazono, "Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives," Jpn. J. Appl. Phys., 42 1-15 (2003).   DOI
29 M. Martin, "Transport and Degradation in Transition Metal Oxides in Chemical Potential Gradients," Materials Science Reports, 7 1-86 (1991).   DOI
30 M. Martin, "Materials in Thermodynamic Potential Gradients," J. Chem. Thermodynamics, 35 1291-1308 (2003).   DOI   ScienceOn
31 A. Hammou and J. Guindet, "Solid Oxide Fuel Cells," pp 407-443 in The CRC Handbook of Solid State Electrochemistry. Ed. by P. J. Gellings and H. J. M. Bouwmeester, CRC Press, Boca Raton, 1996.