• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.028 seconds

Effect of $\alpha-Al_2O_3$ Seeds and Alumina Sol on $\alpha$-Alumina Powder Derived from $\gamma-Al_2O_3$ ($\gamma$-알루미나부터 $\alpha$-알루미나 분말 제조에 있어 Seeding과 알루미나 졸이 미치는 영향)

  • 임경란;장진욱;임창섭;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.482-488
    • /
    • 1995
  • The phase transformation temperature from $\theta$- to $\alpha$-alumina was lowered from 1214$^{\circ}C$ to 114$0^{\circ}C$ in DSC by treating ${\gamma}$-alumina obtained by calcination of boehmite at $700^{\circ}C$ for 2hrswith $\alpha$-Al2O3 seeds (d50=0.36${\mu}{\textrm}{m}$) and 3wt% of the alumina sol. $\alpha$-Al2O3 seeds seemed to lower to the transformation temperature and the alumina sol suppressed the high temperature agglormeration. The effect was increased as the amount of the sol was increased, which was supported by TEM and particle size distribution. For an example, spherical ${\gamma}$-alumina powder with d50=0.54${\mu}{\textrm}{m}$ was prepared by treating the ${\gamma}$-alumina with 9 wt% of the alumina sol and 3wt% of the $\alpha$-Al2O3. It sintered to 99% of the theoretical density at 150$0^{\circ}C$ for 2hrs. and it had relatively homogeneous microstructure with 2~3${\mu}{\textrm}{m}$ sized grains.

  • PDF

The Microstructure and Microwave Dielectric Properties of Ceramics in the System CaTiO3-Li0.5Nd0.5TiO3

  • Lowe, Tristan;Azough, Feridoon;Freer, Robert
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.328-332
    • /
    • 2003
  • Ceramics of xCaTiO$_3$-(1-x)Li$_{0.5}$Nd$_{0.5}$TiO$_3$(xCT-(1-x)LNT) series have been prepared by the mixed oxide route. Powders were calcined at 110$0^{\circ}C$ ; cylindrical specimens were fired at temperatures in the range 1300-150$0^{\circ}C$. Sintered products were typically 90-95% dense. The microstructures were dominated by angular grains typically 1.3${\mu}{\textrm}{m}$ to 3.5 ${\mu}{\textrm}{m}$ in size. Twinning in the microstructures was analysed using Electron Back Scattered Diffraction (EBSD). Microwave dielectric properties of xCT-(1-x)LNT at 2.1 GHz ($\varepsilon$$_{r}$, Qxf, and $\tau$r) were 170,3800 GHz and 744 ppm/$^{\circ}C$ for pure CaTiO$_3$ and 80,2000 GHz and -240 ppm/$^{\circ}C$ for LNT. The $\tau$r decreases almost linearly from 744 for pure CaTiO$_3$ to -240 for pure LNT.LNT.T.

Mechanical Strength and Thermal Conductivity of Pure/Opacified Silica Aerogels (순수/불투명화 실리카 에어로겔의 기계적 강도 및 열전도도)

  • 현상훈;이찬호;김동준;성대진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.969-978
    • /
    • 1997
  • The properties of microstructure, hydrophobicity/hydrophilicity, mechanical strength, and thermal conduction of pure/opacified silica aerogels synthesized by the sol-gel supercritical drying technique were investigated. The hydrophobic surface of opacified silica aerogels doped with carbon (0.13 g/cm3 density, 94% porosity, 580 m2/g specific surface area) transformed to hydrophilic surface after heat-treated above 30$0^{\circ}C$. The values of compressive modulus (1.85 MPa) and strength (0.5 MPa) of opacfied silica aerogels were about 20 times higher than those of pure silica aerogels. The mechanical properties of pure silica aerogels heat-treated at $700^{\circ}C$ were also considerably improved without changing their porosity and density. Particularly, compressive modulus and compressive strength of pure silica aerogels GPSed under 100$0^{\circ}C$ and 80 bar were improved 140 and 37 times, respectively. Thermal conductivities of pure/opacified silica aerogels measured at room temperature and 227$^{\circ}C$ were about 0.013 and 0.019 W/m.K, respectively, and were to be found very low value of 0.004 W/m.K below 10 torr pressure at room temperature.

  • PDF

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조 (I))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1199-1204
    • /
    • 1997
  • SiC conversion layer was fabricated by the chemical vapor reaction between graphite substrate and silica powder. The CVR process was carried out in nitrogen atmosphere at 175$0^{\circ}C$ and 185$0^{\circ}C$. From the reduction of silica powder with graphite substrate, the SiO vapor was created, infiltrated into the graphite substrate, then, the SiC conversion layer was formed from the vapor-solid reaction of SiO and graphite. In the XRD pattern of conversion layer, it was confirmed that 3C $\beta$-SiC phase was created at 175$0^{\circ}C$ and 185$0^{\circ}C$. Also, in the back scattered image of cross-sectional conversion layer, it was found that the conversion layer was easily formed at 185$0^{\circ}C$, the interface of graphite substrate and SiC layer was observed. It was though that the coke particle size and density of graphite substrate mainly affect the XRD pattern and microstructure of SiC conversion layer. In the oxidation test of 100$0^{\circ}C$, the SiC converted graphites exhibited good oxidation resistance compared with the unconverted graphites.

  • PDF

Magnetic Properties of CrO2 Thin Films Deposited by Thermal Deposition (열분해법으로 형성된 산화크롬 박막의 자기적 특성)

  • Choi, Hyun-Ju;Lim, Dae-Soon;Lee, Jeon-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.653-656
    • /
    • 2004
  • We report the magnetic properties, microstructures, and crystal orientations of the CrO$_2$ thin films on TiO$_2$ single crystals. CrO$_2$ thin films were deposited by thermal decompositions with CrO$_3$ source materials. The microstructure of (110) oriented CrO$_2$ thin films deposited on (110) TiO$_2$ single crystals were uniform. As the oxygen flow rates increased, the resistivity, coercive field, and remnant magnetization of the CrO$_2$ thin films on TiO$_2$ single crystals decreased.

A Study on the Surface Modification of Graphite by CVD SiC -Growth Characteristics of SiC in a Horizontal CVD Reactor- (화학증착 탄화규소에 의한 흑연의 표면개질 연구 -수평형 화학증착반응관에서 탄화규소 성장특성-)

  • 김동주;최두진;김영욱;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.419-428
    • /
    • 1995
  • Polycrystalline silicon carbide (SiC) thick films were depostied by low pressure chemical vapor deposition (LPCVD) using CH3SiCl3 (MTS) and H2 gaseous mixture onto isotropic graphite substrate. Effects of deposition variables on the SiC film were investigated. Deposition rate had been found to be surface-reaction controlled below reactor temperature of 120$0^{\circ}C$ and mass-transport controlled over 125$0^{\circ}C$. Apparent activation energy value decreased below 120$0^{\circ}C$ and deposition rate decreased above 125$0^{\circ}C$ by depletion effect of the reactant gas in the direction of flow in a horizontal hot wall reactor. Microstructure of the as-deposited SiC films was strongly influenced by deposition temperature and position. Microstructural change occurred greater in the mass transport controlled region than surface reaction controlled region. The as-deposited SiC layers in this experiment showed stoichiometric composition and there were no polytype except for $\beta$-SiC. The preferred orientation plane of the polycrystalline SiC layers was (220) plane at a high reactant gas concentration in the mass transfer controlled region. As depletion effect of reactant concentration was increased, SiC films preferentially grow as (111) plane.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(III) : Effect of Al2O3 Addition on the Mechanical Properities and Microstructures of Ce-TZP (CeO2안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(III) : Ce-TZP의 기계적성질 및 미세조직에 미치는 Al2O3첨가의 영향)

  • 김문일;박정현;강대석;문성환;안계원
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 1990
  • Effect of Al2O3 addition on the mechanical properties and microstructure of Ce-TZP were studied. 12, 14, 16Ce-TZP containing 0-40wt% Al2O3 were prepared by sintering at 155$0^{\circ}C$ for 2h. in air. Density, linear shrinkage, bending strength, Vickers hardness, microstructuer and the amount of stress induced phase transformation were examined. Vickers hardness increased linearly with increasing amounts of Al2O3. The amount of transformation and fracture toughness decreased linearly with increasing amount of Al2O3. Linear shrinkage and relative density decreased with increasing Al2O3 content in all composition of Ce-TZP. Grain growth of Ce-TZP was inhibited by Al2O3 dispersion and fracture mode of Ce-TZP/Al2O3 composites transformed from intergranular to transgranular fracture as the amount of Al2O3 increased. TEM observation revealed that Al2O3 particles were located mainly at grain boundaries of ZrO2.

  • PDF

Mechanical Properties of the Ceramics of the System Al2O3-ZrO2-Y2O3 Prepared by the Precipitation Method (침전법에 의한 Al2O3-ZrO2-Y2O3계 세라믹스의 기계적 특성)

  • 김준태;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.364-372
    • /
    • 1988
  • The mechanical properties and microstructure of ceramics of the system Al2O3-ZrO2-Y2O3 sintered at 1$650^{\circ}C$ for 2h after powder preparation by the precipitation method from Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were investigated. The Al2O3-ZrO2-Y2O3 ceramics sintered at 1$650^{\circ}C$ for 2h after mixing alpha-Al2O3 and ZrO2-Y2O3 powders, both were separately precipitated and calcined, were found to have the relative density higher than 97.5% so that the strengthening and toughening mechanisms could be explained mainly as the stress-induced phase transformation. On the other hand, the sintered bodies prepared by co-precipitating the three starting materials were measured to have the relative density lower than 85% so that the degradation of strength were observed above 15 vol% ZrO2 contents due to the high porosity by which the effect of stress-induced phase transformation was assumed to be depressed.

  • PDF

Influence of Alkaline-activator Content on the Compressive Strength of Aluminosilicate-based Geopolymer (알루미노 실리케이트계 지오폴리머의 압축강도에 미치는 알카리 활성화제의 영향)

  • Kim, Jin-Tae;Seo, Dong-Seok;Kim, Gab-Joong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Portland cement has been restricted in applications to ecological area because of its environmental harmfulness and the $CO_2$ emission during a production process. Geopolymer materials attract some attention as an inorganic binder due to their superior mechanical and eco-friendly properties. In this study, geopolymer-based cement was prepared by using aluminosilicate minerals (flyash, meta-kaolin) with alkaline-activators and its compressive strength with concentration of alkaline-activators was investigated. Aluminosilicate-based geopolymers were obtained by mixing aluminosilicate minerals, alkaline solution (NaOH or KOH with different concentration) and water-glass under the vigorous stirring for 20 min. Compressive strength after curing at $30^{\circ}C$ for 3 days increased with the concentration of alkaline-activator due to the enhanced polymerization of the aluminosilicate materials and dense microstructure. Aluminosilicate-based geopolymer cement using KOH as an alkaline-activator showed high compressive strength compared with NaOH activator. In addition, geopolymer cement using fly-ash as a raw material showed higher compressive strength than that of meta-kaolin.

Fabrication of Porcelains Having Improved Thermal Shock Resistance by a Lithium Solution Infiltration Method (리튬용액침투법에 의한 내열충격성이 향상된 세라믹 제조)

  • Na, Sang-Moon;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • Porcelain with high thermal shock resistance was successfully fabricated by a lithium solution infiltration method with a lithium hydroxide solution. Lithium hydroxide solutions having various lithium concentrations were infiltrated into pre-sintered porcelain bodies. The porcelain sample infiltrated by the 9 wt% lithium solution and heat treated at $1250^{\circ}C$ for 1 h showed a low thermal expansion coefficient of $1.0{\times}10^{-6}/^{\circ}C$ with excellent thermal shock resistance. The highly thermally resistant porcelain had a well-developed ${\beta}$-spodumene phase with the general phases observed in porcelain. Furthermore, the porcelain showed a denser structure of $2.41g/cm^3$ sintering density and excellent whiteness in comparison with commercial thermally resistible porcelains. The lithium hydroxide in the samples readily reacted with moisture, and liquid phase reactants were formed during the fabrication process. In the case of an excess amount of lithium in the sample body, the lithium reactants were forced to the surface and re-crystallized at the surface, leaving large pores beneath the surface. These phenomena resulted in an irregular structure in the surface area and led to cracking in samples subjected to a thermal shock test.