• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.027 seconds

Correlation between the Microstructure and the Electrical Conductivity of SOFC Anode, Ni-YSZ : II. Temporal Variation (SOFC 음극용 Ni-YSZ 복합체의 미세구조와 전기적 물성간의 상관관계: II. 경시변화)

  • Moon, Hwan;Lee, Hae-Weon;Lee, Jong-Ho;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1140-1145
    • /
    • 2000
  • Ni의 함량이 서로 다른 Ni-YSZ 복합체를 100$0^{\circ}C$ 환원 분위기 하에서 열처리하며 시간에 따른 미세구조의 변화를 관찰하였다. Quantitative microscopy 이론을 응용한 화상분석 결과 Ni-YSZ 복합체의 미세구조는 열처리시 나타나는 Ni상의 미세구조 변화에 가장 큰 영향을 받고 있었다. 특히 Ni의 양이 많은 조성에서는 Ni 상간의 접촉이 많아 고상반응에 의한 미세구조의 변화가 심하였는데 이로 인해 복합체 미세구조의 안정화가 느리게 진행되었다. Ni-YSZ 복합체의 전기 전도도 역시 Ni상의 미세구조 변화에 큰 영향을 받았는데 복합체 전체 미세구조의 경시변화와는 달리 Ni상의 많은 조성보다는 Ni상의 percolation이 일어나는 조성 부근에서 더 큰 영향을 받았다. 이로 인해 Ni-YSZ의 전기 전도도는 Ni의 percolation threshold 부근 조성에서 안정화되는데 더 많은 시간을 요하였다.

  • PDF

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock (가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성)

  • Song, Jun-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

Fabrication of Low Temperature Cofired Ceramic (LTCC) Chip Couplers for High Frequencies ; II. Effect of Sintering Process on Ag Diffusion (고주파용 저온 동시소성 세라믹(LTCC)칩 커플러 제조: II. Ag 이온 확산에 대한 소결공정의 영향)

  • 이선우;김경훈;심광보;구기덕
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.490-496
    • /
    • 1999
  • The sintering behavior of LTCC (low temperature cofired ceramics) chip couplers was investigated in relation with Ag diffusion at the interface of glass ceramic substrate-Ag electrode. Sintering temperature was in the range of 825$^{\circ}C$-975$^{\circ}C$. The commercial green sheet and silver electrode were used. Below 875$^{\circ}C$ the diffusion of the Ag ion into the substrate and the penetration of glassy phases into the electrode occurred due to an increase of fluidity. Thus the lectrode line was severely deformed and damaged. At 975$^{\circ}C$ the transformation of crystalline phases into glassy phases and the melting of the Ag electrode resulted in the diffusion of the considerable amount of Ag ions.

  • PDF

Anisortopy of the Silicon Nitride Prepared by Tape Casting

  • Park, Dong-Soo;Kim, Changd-Won;Park, Chan
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 1999
  • Silicon nitride ceramics with highly oriented microstructure were prepared by tape casting a slurry containing 5 wt% of the silicon nitride whiskers. The whiskers were aligned in the casting direction and worked as seeds for the grain growth. The anisotropy was observed from the sintering shrinkage, Vickers indentation crack lengths, and XRD patterns. The cracks were much longer on the surface normal to the aligned grains than on the tape casting surface where the lateral cracks were also observed. The effect of sintering additives and the annealing treatment on the indentation crack length was examined. The sample with higher silica content had longer cracks than the one with lower silica content. The crack length anisotropy increased after annealing at 2123K.

  • PDF

Effect of Crystal Shape on the Grain Growth during Liquid Phase Sintering of Ceramics

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.728-733
    • /
    • 2006
  • The equilibrium or growth shape of ceramic materials is classified largely into two categories according to the thermodynamic conditions imposed. One is a polyhedral shape where the surface free energy is anisotropic, and the other a spherical shape where the surface free energy is isotropic. In the case of grains with a polyhedral shape of anisotropic surface free energy, socalled abnormal grain growth usually takes place due to a significant energy barrier for a growth unit to be attached to the crystal surface. In the case of grains with a spherical shape of isotropic surface free energy, however, normal grain growth with a uniform size distribution takes place. In this contribution, the state-of-the-art of our current understanding of the relationship between the crystal shape and the microstructure evolution during the sintering of ceramic materials in the presence of a liquid phase was discussed.

A Study on the Improvement of the Electrical Stability Versus MgO Additive for ZnO Ceramic Varistors (MgO 첨가에 따른 ZnO 세라믹 바리스터의 안정성 향상에 관한 연구)

  • 소순진;김영진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.398-405
    • /
    • 2002
  • The degradation characteristics of MgO additive for the ZnO ceramic devices fabricated by the standard ceramic techniques are investigated in this study. These devices were made from basic Matsuoka's composition. Especially, MgO was added to analyze the degradation characteristics and devices were sintered in air at $1200^{\circ}C$. The conditions of DC degradation test were $115\pm2^{\circ}C$ for 12h. Using XRD and SEM, the phase and microstructure of samples were analyzed, respectively. The elemental analysis in the microstructures was performed by EDS, E-J analysis was used to determine $\alpha$. Frequency analysis was accomplished to understand the relationship between $R_G$ and $R_B$ with the electric stress at the equivalent circuit.

Abnormal Grain Growth Mechanism of Calcium Hexaluminate Phase

  • Song, Jun-Ho;Jo, Young-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.525-526
    • /
    • 2006
  • Calcium-hexaluminate phase $(CA_6)$ is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of $CA_6$ morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate $(CA_6)$ composites. Calcium-hexaluminate $(CA_6)$ composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate $(CA_6)$ phase was obtained by the solid reaction through the formation of intermediate phase $(CA_2)$. $CA_6$ phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of $CA_6$, alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.

  • PDF

A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication (화학증착법을 이용한 삼중 코팅 핵연료 제조에 관한 연구)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Kim, Sung-Soon;Lee, Hong-Lim;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.169-174
    • /
    • 2007
  • TRISO coated fuel particle is one of the most important materials for hydrogen production using HTGR (high temperature gas cooled reactors). It is composed of three isotropic layers: inner pyrolytic carbon (IPyC), silicon carbide (SiC), outer pyrolytic carbon (OPyC) layers. In this study, TRISO coated fuel particle layers were deposited through CVD process in a horizontal hot wall deposition system. Also the computational simulations of input gas velocity, temperature profile and pressure in the reaction chamber were conducted with varying process variable (i.e temperature and input gas ratios). As deposition temperature increased, microstructure, chemical composition and growth behavior changed and deposition rate increased. The simulation showed that the change of reactant states affected growth rate at each position of the susceptor. The experimental results showed a close correlation with the simulation results.

Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma (RF 열플라즈마를 이용한 TEOS로 부터의 SiC 나노분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Kim, Ji-Ho;Byeon, Myeong-Seob;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. RF Thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) has been utilized for synthesis of high purity SiC powder from cheap inorganic solution (Tetraethyl Orthosilicate, TEOS). It is found that the powders by thermal plasma consist of SiC with free carbon and amorphous silica ($SiO_2$) and, by thermal treatment and HF treatment, the impurities are driven off resulting high purity SiC nano-powder. The synthesized SiC powder lies below 30 nm and its properties such microstructure, phase composition, specific surface area and free carbon content have been characterized by X-ay diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) and Brunauer-Emmett-Teller (BET).