• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,363, Processing Time 0.036 seconds

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Thermal Shock Behavior of Porous Nozzles with Various Pore Sizes for Continuous Casting Process

  • Kim, Ju-Young;Yoon, Sang-Hyeon;Kim, Yoon-Ho;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.617-620
    • /
    • 2011
  • Thermal shock behavior of porous ceramic nozzles with various pore sizes for continuous casting process of steel was investigated in terms of physical properties and microstucture. Porous nozzle samples with a composition of $Al_2O_3$-$SiO_2$-$ZrO_2$ were fabricatedby adding various sizes of graphite as the pore forming agent. As the graphite size increased from 45~75 to 150~180 ${\mu}m$, both the resulting pore size and the flexural strength also increased. A thermal shock test was carried out at temperatures (${\Delta}$T) of 600, 700, 800, and 900$^{\circ}C$. Microstructure analysis revealed a small number of cracks on the sample with the largest mean pore size of 22.32 ${\mu}m$. In addition, increasing the pore size led to a smaller decrease in both pressure drop and elastic modulus. In conclusion, controlling the pore size can enhance thermal shock behavior.

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics

  • Yoo, H.S.;Son, Y.H.;Hong, T.W.;Ur, S.C.;Ryu, S.L.;Kweon, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.533-534
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. All XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050\;^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050\;^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5kV. From these results, a BLT ceramic target for plused laser deposition (PLD) system was successfully fabricated.

  • PDF

Dielectric Properties of Complex Microstructure for High Strength LTCC Material (고강도 LTCC 소재을 위한 복합구조의 유전특성)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Sung, Woo-Kyung;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

Effect of Annealing on Properties of SiC-$TiB_2$ Composites (SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics (소결한 $(Bi,La)_4Ti_3O_{12}$ 강유전체 세라믹의 미세구조 및 전기적 특성)

  • Yoo, Hyo-Sun;Son, Yong-Ho;Ur, Soon-Chul;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.276-277
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. AII XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5 kV. The calculated electromechanical coupling factor ($k_t$) of it was about 5% and the mechanical quality factor (Qm) was about 2200. From these results, a BLT ceramic target for pulsed laser deposition (PLD) system was successfully fabricated.

  • PDF

Effect of the Size and Amount of SiC on the Microstructures and Thermal Conductivities of ZrB2-SiC Composite Ceramics (ZrB2-SiC 복합세라믹스의 미세구조와 열전도도에 미치는 SiC 크기와 첨가량의 영향)

  • Kim, Seong-Won;Kwon, Chang-Sup;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.379-384
    • /
    • 2012
  • This paper reports the microstructures and thermal conductivities of $ZrB_2$-SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of $ZrB_2$-x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.