• Title/Summary/Keyword: Ceramic interconnect

Search Result 31, Processing Time 0.026 seconds

The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode (스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향)

  • Hwang, Ho-June;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.

Research on Performance of LSM Coating on Interconnect Materials for SOFCs

  • Zhai, Huijuan;Guan, Wanbing;Li, Zhi;Xu, Cheng;Wang, Wei Guo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.777-781
    • /
    • 2008
  • Experiments were conducted using SUS430 and Crofer 22 APU steels coated by LSM using plasma spray and slurry spray methods, respectively. High-temperature conductivity and oxidation resistance were investigated. For comparison, SUS430 and Crofer 22 APU without LSM coating were also investigated and coefficient of thermal expansion (CTE) was measured. The results show that the materials without LSM coating exhibit almost the same CTE as YSZ electrolyte in a range of temperatures of $550{\sim}850^{\circ}C$. When coated with LSM, the oxidation rate of the steels decreases by $30{\sim}40%$ using slurry spray and by $10{\sim}30%$ using plasma spray whereas the steels using plasma spray have a better high-temperature conductivity than the steels using slurry spray. It is thus concluded that the LSM coating has a limited effect on increasing high-temperature conductivity while it can effectively reduce the oxidation of the steels.

Effects of Alloying Elements on the Properties of Fe-Cr Alloys for SOFC Interconnects (SOFC 분리판용 Fe-Cr 합금의 특성에 미치는 합금성분의 영향)

  • Kim, Do-Hyeong;Jun, Jae-Ho;Kim, Seung-Goo;Jun, Joong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.833-841
    • /
    • 2005
  • The oxidation resistance and electrical conductivity of various commercial ferritic stainless steels including STS444 were tested in an air atmosphere at $700^{\circ}C$. Crofer22 developed specially for SOFC interconnect was also examined for the aim of comparing with the test results of STS444. Although STS444 exhibited higher oxidation resistance than Corfer22, the electrical conductivity of the scale formed on Crofer22 was higher, indicating that the resistivity of scale formed on Crofer22 is much lower than that of STS444. To gain a better understanding of the relation between oxidation behavior and electrical conductivity, the oxide scales formed on STS444 and Crofer22 were analyzed in terms of the structure, composition, and phase. Consequently, the influence of alloying elements on electrical conductivity of Fe-Cr alloys was discussed.

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

Effects of Ca-Source on the Sintering and Electrical Properties of La0.7Ca0.3Cr0.9Co0.1O3-δ for Solid Oxide Fuel Cell Interconnects (고체산화물연료전지 연결재용 La0.7Ca0.3Cr0.9Co0.1O3-δ 조성계에 Ca Source 변화에 따른 소결 및 전기적 특성에 관한 연구)

  • Park, Sung-Tae;Choi, Byung-Hyun;Ji, Mi-Jung;An, Yong-Tae;Choi, Heon-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.246-250
    • /
    • 2011
  • Effects on sintering and electrical properties of $La_{0.7}Ca_{0.3}Cr_{0.9}Co_{0.1}O_{3-{\delta}}$ system, a interconnect material for cylindrical and flat tubular solid oxide fuel cells (SOFC), have been investigated by Ca-source when using $CaCO_3$ and $CaF_2$. When using $CaCO_3$ and $CaF_2$ was mixing as Ca-source, single phased perovskite solid solution was observed for each sample. The sintering temperature was decreased by $CaF_2$ contents was increased. When using 0.1 mole $CaF_2$ was densely sintered at $1400^{\circ}C$ and relative density was 93.8%. Also, electrical conductivity in oxidation and reducing atmosphere was 47, 4.3 S/cm, respectively, due to $F^-$ ion enhance the electrical conductivity in reducing atmosphere.

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.