• 제목/요약/키워드: Ceramic Industry

검색결과 277건 처리시간 0.027초

폐콘크리트 미분말을 사용한 저탄소형 시멘트의 조직 및 상분석 (Image and Phase Analysis of Low Carbon Type Recycled Cement Using Waste Concrete Powder)

  • 송훈;신현욱;이종규;추용식;박동천
    • 한국건설순환자원학회논문집
    • /
    • 제2권4호
    • /
    • pp.314-320
    • /
    • 2014
  • 시멘트산업은 건설산업에의 기초소재를 공급하는 중추이지만 시멘트 제조시 고온의 소성이 필요하고 소성시의 원료 및 연료로부터 발생하는 $CO_2$와 구조물 해체시 발생하는 건설폐기물은 새로운 환경문제로 대두되고 있다. 본 연구는 폐콘크리트 미분말의 리사이클을 통해 시멘트로서 활용하기 위한 것이다. 기존의 불활성 충전재로서의 활용에서 벗어나 화학적 특성을 기반으로 배합조건을 조절하여 클링커 및 시멘트를 제조하고 미세조직 및 상분석을 실시하여 저탄소형 시멘트 개발 가능성을 타진하고자 한다. 연구결과 폐콘크리트 미분말을 활용한 저탄소형 시멘트 제조가 가능하며 유효활용을 위한 방안이 마련되어야 한다.

SiC-CVD 공정에서 CFD 시뮬레이션의 응용 (APPLICATION OF CFD SIMULATION IN SIC-CVD PROCESS)

  • 김준우;한윤수;최균;이종흔
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.67-71
    • /
    • 2013
  • Recently, the rapid development of the semiconductor industry induces the prompt technical progress in the area of device integration and the application of large diameter wafers for the price competitiveness. As a result of the usage of large wafers in the semiconductor industry, the silicon carbide components which have layers of silicon carbide on graphite or RBSC substrates is getting widely used due to the advantages of SiC such as high hardness and strength, chemical and ionic resistant to all the environments superior than other ceramic materials. For the uniform and homogeneous deposition of silicon carbide on these huge components, it needs to know about the gas flow in the CVD reactor, not only for the delicate adjustment of the process variables but more essentially for the cost reduction for the shape change of specimens and their holders on the stage of reactor. In this research, the CFD simulation is challenged for the prediction of the inner distribution of the gas velocity. Chemical reaction simulation is used to predict the distribution of concentration of the reacting gas with the rotating velocity of the stage. With the increase of the rotating speed, more uniform distribution of the reacting gas on the surface of the stage was obtained.

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of laminating and sintering condition on permittivity and shrinkage during LTCC process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • LTCC (Low Temperature Co-fired Ceramic) has been emerged as a promising technology in packaging industry. In this technology the lamination and the sintering process are very important because they change the permittivity of ceramics and the dimension of metal pattern which have influences on electric property. In this paper we studied on influence of the permittivity and the dimension change by lamination pressure and sintering temperature of LTCC process. As a results, permittivity increase along with increasing of lamination pressure and sintering temperature.

  • PDF

세라믹 담체를 이용한 안료폐수의 호기성처리 (Aerobic Treatment of Pigment Wastewater using Ceramic Support Carrier)

  • 박영식;안갑환
    • 한국환경과학회지
    • /
    • 제10권4호
    • /
    • pp.281-286
    • /
    • 2001
  • Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed boifilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biodilm reactor, the influent concentration of COD and Orange 2 were 75~500mg/${\ell}$(0.45~3.00kg COD/$m^3.day), 5~50mg/$\ell$(0.03~0.30kg Orange 2/$m^3$.day), respectively. At a COD loading rate 2.5kg COD/$m^3$.day and Orange 2 loading rate of 0.18kg Orange 2/$m^3$.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.

  • PDF

다공성 Mullite 세라믹스 제조 및 그 특성 (Fabrication of Porous Mullite Ceramics and Its Properties)

  • 김병훈;나용한
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.275-281
    • /
    • 1994
  • Mullite ceramics have recently been utilized as ceramic gas filters for high-temperature treatment of solid wastes due to their low thermal expansion coefficient and high refractoriness under load. In this experiment, mechanical, thermal and microstructural properties of porous mullite ceramics, which were used as carriers and high-temperature gas filters in food industry, were investigated as a function of starting raw materials. Porous mullite ceramics showed different microstructures depending on their starting materials. The specimen M2 had excellent resistance to thermal spalling and high mechanical strength. The average pore size varied from 0.3 ${\mu}{\textrm}{m}$ to 16.6 ${\mu}{\textrm}{m}$, and porous mullite ceramics fabricated by thermal decomposition of Al(OH)3 had very large pores and broad distribution of pore size.

  • PDF

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

Fe-Scale과의 반응에 의한 $Cr_3C_2$계 복합체의 산화손상 (Oxidation of $Cr_3C_2$ Composites with Fe-Scale)

  • 한동빈;홍기곤;박병학
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.767-771
    • /
    • 1994
  • In a salb-preheating furnace of steel-making industry, the oxidation/degradation behavior of Cr3C2 ceramic composited dkid button reaction with scale in Fe-oxide system occurs and was thermodynamically examined. The reaction of scale with Cr3C2 skid button produces Cr3C2(s) and C(s), and Co gas is then evolved from the reaction of C(s) with Fe-scale. Cr3C2(s) from oxidation of Cr3C2(s) reacted with Fe-oxide(s) becomes high-melting chromite. The chromite acts as protection layer against further oxidation and improves resistance of the reaction of Cr3C2 skid button with Fe-scale.

  • PDF

$Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성 (Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

내플라즈마성 알루미나 세라믹스 제조 공정 (Processing of Plasma Resistant Alumina Ceramics)

  • 이현권;조경식;김미영
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.385-391
    • /
    • 2009
  • Need for plasma resistant ceramic materials has been continuously increased in semiconductor and display industry requiring plasma processing to realize ultra fine circuit process. Among promising candidates, alumina ceramics have still some advantages with respect to its economic aspect. In this study, fabrication of plasma resistant alumina ceramics was tried, and its processing optimization was also aimed. Careful processing control and thereby uniform microstructure of $Al_2O_3$ gave rise to enhanced plasma resistance, even comparable to market-governing commercial $Al_2O_3$. A further study is needed concerning ${\beta}-Al_2O_3$ materials system, presumably playing a decisive role in decreasing plasma resistance of $Al_2O_3$ ceramics.

요업공업에 있어서 국산저질골석의 이용에 관한 연구 (투각섬석질 골석-슬라그-점토계) (A study on the Utilization of the Domestic Low-Grade Talc In Ceramic Industry (Tremolitic Talc-Slag-Clay System))

  • 안영필;최롱;황정길
    • 한국세라믹학회지
    • /
    • 제14권1호
    • /
    • pp.12-18
    • /
    • 1977
  • In our former paper, tremolitic talc, -wollastonite-clay system was studied. In this study blast furnace slag was used(B.F.S.) instead of wollastonite for developing a fast-firing wall tile body. The wall tile bodies consisting of tremolitic talc and B.F.S. asmajor constituents have been fired in the temperature range 1000-120$0^{\circ}C$. Some of these bodies have showed good properties for wall tile manufacture. According to the increased content of B.F.S the fired bodies have showed the decreased thermal expansion which was resulted from the fact that the amounts of diopside and anorthite were gradually increased and those of quartz relatively decreased. Being reasonable in low price and thermo-stable properties tremolitic talc and B.F.S. will be good materials for the fast-firing tile body.

  • PDF