• Title/Summary/Keyword: Ceramic Green Compacts

Search Result 18, Processing Time 0.048 seconds

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.352-357
    • /
    • 2018
  • The slip casting process is widely used to make green bodies from ceramic slips into dense compacts with homogeneous microstructure. However, stress may be generated inside the green body during drying, and can lead to cracking and bending during sintering. When starting from the spherical powders with mono-size distribution to make the close packed body, interstitial voids on octahedral and tetrahedral sites are formed. In this research, experiments were carried out with powders of three size types (host powder (H), octahedral void filling powder (O) and tetrahedral void filling powder (T)) controlled for average particle size by milling from two commercial alumina powders. Slips were prepared using three different powder batches from H only, H+O or H+O+T mixed powders. After manufacturing green compacts by solid-casting, compacts were dried at constant temperature and humidity and sintered at $1650^{\circ}C$. Alumina samples fabricated from the multi-sized powder mixture had improved compacted and sintered densities.

Effect of Suspension Property on Granule Characteristics and Compaction Behavior of Fine Si3Na4 Powder (분산계 특성이 질화규소 미분의 과립특성 및 충진거동에 미치는 영향)

  • 이해원;오성록
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.462-470
    • /
    • 1995
  • The characteristics of spray-dried granules are important for dry pressing operation since they have great influences on die-filling, compaction ratio, and resulting green microstructure. An attempt was made to control granule morphology and the packing structure of fine Si3N4 particles in granules by adjusting suspension property. Mercury porosimetry was used to characterize the pore structures of both granules and green compacts. Finally, the effects of particle packing structure in granules and green microstructure on sintering behavior were investigated.

  • PDF

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF

Effect on the Forming Property of Ceramic Powder by Dynamic CIP (동적 정수압 가압 성형에 의한 분말의 성형특성)

  • 김병익;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.391-395
    • /
    • 1992
  • In order to improve the compactness and uniformity in ceramic green body, we have developed dynamic CIP(Cold Isostatic Pressing) as a new forming method in which the CIP and the vibratory pressing were combined. In dynamic CIP, bulk density on alumina compacts was linearly increased with higher │Pmax-Pbias│and maximum pressure of dynamic-CIP was decreased over one-third of that of conventional CIP to obtain the same bulk density.

  • PDF

A Study on the Sinterability of MgO-Al2O3-SiO2 System Ceramic Powders Prepared by Spray Pyrolysis Method (분무열분해법으로 제조한 MgO-Al2O3-SiO2계 화합물분체의 소결성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 1989
  • Spinel, mullite, forsterite and cordierite composition powders were synthesized from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and SiCl4-ethanol solution by spray pyrolysis method and the sinterability of these powders were investigated. The bulk density of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr was 3.56g/㎤(99.5% relative density) and 3.16g/㎤(99.7% relative density), respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The bulk density of forsterite and cordierite specimens sintered at 1,480 and 1,40$0^{\circ}C$ for 2hrs were 3.217 and 2.155g/㎤, respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The constituent compositions of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr were 27.5wt% MgO and 70.5wt% Al2O3, respectively. Vickers microhardness and fracture toughness of spinel sintered at the above condition were 13.7GPa and 2.6MN.m3/2, respectively, and room temperature bending strength, 425MPa, was nearly maintained even at the elevated temperature. In the case ofmullite specimens, those values were 13.5GPa, 2.2MN/m3/2 and 430MPa, respectively.

  • PDF

The Comparison of the Characteristics of Displacement Isolines in the Cylindrical Green Compact under Ultrasonic Vibration

  • Prakorb, Chartpuk;Anan, Tempiam;Somchai, Luangsod;Vorawit, Voranawin
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.120-126
    • /
    • 2015
  • This research is a comparison of the characteristics of the displacement isolines due to powder-die-wall friction that arise during the compaction of ceramic powders in conventional die. It has been done using the CosmosWorks software package of the SolidWorks simulation software. The results of comparative simulation with FEM showed that the comparison of the displacement isolines and distribution of deformation of the ceramic powders. In the case of conventional uniaxial dry compaction for long length cylindrical green compact, considerable bending of the layers in the form of a cone can be observed. It is symmetry along centerline of cylindrical green compact. The distributions of the deformation of the green compacts (diameter 14 mm, height 20 mm) as a result of conventional compaction under ultrasonic vibration with power 1 and 2 kW are reduced to 4% and 6.5% when compared with conventional compaction without ultrasonic vibration respectively. Thus, density distribution can be minimized by increasing the power of ultrasonic vibration.

Preparation and Sintering Characteristics of Y-doped $SrZrO_3$ by Citrate Gel Method

  • Jeon, Yang-Seuk;Sim, Soo-Man
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.217-223
    • /
    • 1999
  • Proten-conductive $SrZr_{0.95} Y_{0.05} O_{2.975}$ powder was prepared by citrate gel method its characteristics and sinterability were investigated. Amorphous gel could be obtained from a citric acid solution that $SrCO_3$ and metal nitrates were dissolved. The initial decomposition of the gel proceeded up to $250^{\circ}C$, followed by combustion of its decomposition products in the temperature range from $250^{\circ}C$ to $500^{\circ}C$. A well-crystallized perovskite phase with a stoichiometric composition after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1200^{\circ}C$ and resulted in 86.8% and 96.5% relative densities at $1400^{\circ}C$ and $1600^{\circ}C$, respectively. Whereas, the powder compacts prepared by solid state reaction had much lower relative densities, 73% at $1400^{\circ}C$ and 92% at $1600^{\circ}C$.

  • PDF

Preparation of Proton-Conducting Gd-Doped Barium Cerate by Oxalate Coprecipitation Method

  • Yong Sung Choi;Soo Man Sim
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder was synthesized by oxalate coprecipitation method. Precipitate with a stoichimetric ratio of the cations was prepared by adding a mixture of Ba, Ce and Gd nitrate solution to an oxalic acid solution at pH 4. Reaction between the constituent oxides to form a perovskite phase was initiated at $800^{\circ}C$ and a single phase $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder having good sinterability was obtained after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1100^{\circ}C$ and resulted in 93% and 97% relative densities at $1300^{\circ}$ and at $1450^{\circ}C$, respectively. Whereas the power compacts prepared by solid state reaction had lower relative densities, 78% at $1300^{\circ}$and 90% at $1450^{\circ}C$. Fine particles of $CeO_2$ second phase were observed in the surface of the sintered compacts. This was attributed to the evaporation of BaO from the surface that had been exposed during thermal etching.

  • PDF

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.