• Title/Summary/Keyword: Ceramic Adhesion

Search Result 202, Processing Time 0.019 seconds

A Study on the Durability Improvement by Controlling the Deterioration of Underground Concrete Structures (지하 콘크리트구조물의 열화 억제에 의한 내구성 증진에 관한 연구)

  • 천병식;최춘식;정원우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.23-31
    • /
    • 2004
  • Normally, coating is used for protecting reinforced concrete. For this purpose, both organic and inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2, SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, organic coatings such as epoxy, urethane and acryl reduce long-term adhesive strength by the difference of their thermal expansion coefficients and elastic modules from those of concrete, and the formed coating cover of these is blistered by poor breathing. Also, when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. In this study, a new coating material for protecting concrete was hybridized with polymer and ceramics. And tests were carried out on its physical and durable characteristics, and safety characteristic on elution. All results were compared with organic coating materials and epoxies and showed that the performance of the developed coating material was not inferior to that of other organic coatings in protecting concrete. On the other hand, safety characteristic on elution was superior to epoxies which were used in this study. So, the developed coating material was considered as a suitable protecting coating material which have advantages of inorganic and organic coatings for protecting underground concrete structures, especially in contact with water.

The effect of Silano-pen on the shear bond strength of resin to feldspathic porcelain and zirconia (실라노 펜의 적용이 장석계 도재 및 지르코니아와 레진의 전단결합강도에 미치는 영향)

  • Shin, Myoung-Sik;Lee, Jeong-Yol;Kim, Min-Soo;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the effect of applying Silano-pen to feldspathic porcelain and zirconia on shear bond strength with composite resin. Materials and methods: Feldspathic porcelain and zirconia specimens were produced into 30 per each 2 mm thick and 12 mm in diameter and their surface was made smooth and even and then embedded in acrylic resin. The specimens were divided into each Group F (Feldspathic porcelain) and Group Z (Zirconia), (1) Hydrofluoric acid etching and silane (F1 & Z1), (2) Silano-pen and silane (F2 & Z2), (3) Hydrofluoric acid etching and Silano-pen, silane (F3 & Z3). After surface conditioning, substrate surfaces of the specimen were examined by SEM. Composite resin cylinders (2 mm high, 3 mm in diameter)were bonded to specimen and shear bond strength between ceramic and composite resin was measured by using universal testing machine. The measured values were statistically analyzed by using two way ANOVA and Tukey's multiple comparison test (${\alpha}=.05$). Results: In the scanning electron micrograph of the treated ceramic surface, Group F2 and F3 appeared the high roughness and Group Z3 appeared the highest density of silica particle. In Feldspathic porcelain, the result of measuring shear bond strength showed that Group F3 was measured to be highest and Group F1 was measured to be lowest but there was no statistical significance among Groups. In zirconia, Group Z3 was measured to be highest and Group Z1 was measured to be lowest and there was statistical significance among Groups (P<.05). Conclusion: In zirconia, applying hydrofluoric acid etching and then Silano-pen and silane is effective for composite resin adhesion.