• 제목/요약/키워드: Centroid Neural Network

검색결과 27건 처리시간 0.017초

Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화 (Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network)

  • 박동철;김우성
    • 한국통신학회논문지
    • /
    • 제31권9C호
    • /
    • pp.853-858
    • /
    • 2006
  • 음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

신경망에 의한 테두리를 보존하는 영상압축 (Edge Preserving Image Compression with Weighted Centroid Neural Network)

  • 박동철;우영준
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1946-1952
    • /
    • 1999
  • 무지도 경쟁학습을 이용하여 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 최소화하기 위한 영상압축 방법이 제안되었다. 제안된 영상압축방법은 영상데이터에서 테두리부분에 해당하는 데이터의 기하학적인 특징을 이용하는데, 영상데이터의 통계학적인 특성을 함께 이용하여 기존의 Centroid Neural Network을 일반화시키는 무지도 경쟁학습에 의하여 자동적으로 더욱 많은 code vector를 테두리부분에 배정함으로서 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 초소화하게 한다. 실험 결과, 기존의 SOM, M-SOM, M/R-CNN등과 비교하여 제안된 방법에 의해 압축된 영상의 복원된 테두리 부분에서 PSNR이 약 2dbv정도 향상된 결과를 보여줄 수 있었다.

  • PDF

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택 (Active Selection of Label Data for Semi-Supervised Learning Algorithm)

  • 한지호;박은해;박동철;이윤식;민수영
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.254-259
    • /
    • 2013
  • 본 논문에서는 준감독 학습 알고리즘(Semi-Supervised Learning Algorithm)의 학습데이터에 필요한 소수의 레이블 데이터를 능동적으로 선택하기 위한 무감독경쟁학습 알고리즘인 VCNN(Vector Centroid Neural Network)을 제안한다. 준감독 학습 알고리즘에서 레이블 데이터의 선택은 학습 결과 큰 영향을 미치고, 레이블 데이터를 선택하는데 있어 많은 비용과 전문적인 지식이 필요하다. 본 논문에서 능동적이고 효율적인 레이블 데이터 선택을 검증하기 위하여 UCI database 와 caltech dataset 을 이용하여 실험한 결과, 기존의 레이블 데이터 선택 방법과 비교하여 안정된 분류 결과와 최소의 오차율을 나타냈다.

데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화 (Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization)

  • 오성권;김영훈;박호성;김정태
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

중심이동과 신경망 기반 주요성분분석을 이용한 얼굴인식 (Face Recognitions Using Centroid Shift and Neural Network-based Principal Component Analysis)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제12B권6호
    • /
    • pp.715-720
    • /
    • 2005
  • 본 논문에서는 영상의 1차 모멘트와 단층신경망에 기반을 둔 주요성분분석을 이용한 얼굴인식 기법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심이동을 위한 것으로 차원을 감소시켜 얼굴인식에 불필요한 배경을 배제시키기 위함이다. 또한 단층신경망을 이용한 주요성분분석은 수치적 기법의 대안으로 Foldiak 학습알고리즘을 이용하며, 차원을 감소시켜 얼굴영상의 특징추출을 위한 정규직교기저를 얻기 위함이다. 제안된 기법을 64$\ast$64 픽셀의 48개(12명$\ast$4장) 학습자 얼굴영상을 대상으로 city-block, Euclidean, 그리고 negative angle의 각 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 제안된 기법은 우수한 인식성능이 있음을 확인하였다. 특히 negative angle를 이용하는 것이 city-block이나 Euclidean을 이용하는 것보다 상대적으로 정확하게 유사성을 측정할 수 있었다.

신경회로망을 이용한 코드북의 순차적 갱신 알고리듬 (An Algorithm to Update a Codebook Using a Neural Net)

  • 정해묵;이주희;이충웅
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1857-1866
    • /
    • 1989
  • In this paper, an algorithm to update a codebook using a neural network in consecutive images, is proposed. With the Kohonen's self-organizing feature map, we adopt the iterative technique to update a centroid of each cluster instead of the unsupervised learning technique. Because the performance of this neural model is comparable to that of the LBG algorithm, it is possible to update the codebooks of consecutive frames sequentially in TV and to realize the hardwadre on the real-time implementation basis.

  • PDF

화자 의존 환경의 AMR 7.4Kbit/s모드에 기반한 보코더 (A New Vocoder based on AMR 7.4Kbit/s Mode for Speaker Dependent System)

  • 민병제;박동철
    • 한국통신학회논문지
    • /
    • 제33권9C호
    • /
    • pp.691-696
    • /
    • 2008
  • 본 논문은 AMR(Adaptive Multi Rate)코더의 7.4kit/s 모드를 기반으로 화자 의존적인 환경에서 더욱 압축률을 높인 새로운 켈프(CELP)계열의 코더를 제안한다. 제안된 코더는 OGM(OutGoing Message)이나 TTS(Text-To-Speech) 등 한 사람의 음성만을 필요로 하는 시스템에서 유용하게 사용할 수 있다. 새로운 코더의 압축률을 높이기 위해서 무감독 학습 신경망인 Centroid Neural Networks(CNN)를 이용한 새로운 LSP 코드북을 생성하여 사용한다. 또한 고정 코드북 탐색 단계에서 AMR 7.4 kbit/s 모드에서는 4개의 펄스를 서브프레임 마다 사용하는 대신에 새로운 코더에서는 오직 2개의 펄스만을 사용하기 때문에 압축률을 더 높일 수 있다. 이로 인해서 스피치의 질이 감소하게 되는데, 각 서브프레임 마다 예상하는 펄스를 적용함으로써 보상받을 수 있다. 제안된 보코더는 기존 AMR 7.4Kbps모드와 비교해 27% 높은 압축률을 가지는 동시에, MOS( Mean Opinion Score)의 면에서 볼 때, 대등한 음질을 보였다.

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.