• Title/Summary/Keyword: Centroid Algorithm

Search Result 142, Processing Time 0.019 seconds

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

Improvement of Wi-Fi Location Accuracy Using Measurement Node-Filtering Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of the Wi-Fi access point (AP) positioning technique. The proposed algorithm based on evaluating the trustworthiness of the signal strength quality of each measurement node is superior to other existing AP positioning algorithms, such as the centroid, weighted centroid, multilateration, and radio distance ratio methods, owing to advantages such as reduction of distance errors during positioning, reduction of complexity, and ease of implementation. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment with multiple walls and obstacles, multiple office rooms, corridors, and lobby, and measured the corresponding AP signal strength value at several specific points based on their coordinates. Using the proposed algorithm, we can obtain more accurate positioning results of the APs for use in research or industrial applications, such as finding rogue APs, creating radio maps, or estimating the radio frequency propagation properties in an area.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF

Online anomaly detection algorithm based on deep support vector data description using incremental centroid update (점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘)

  • Lee, Kibae;Ko, Guhn Hyeok;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.199-209
    • /
    • 2022
  • Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

MR Brain Image Segmentation Using Clustering Technique

  • Yoon, Ock-Kyung;Kim, Dong-Whee;Kim, Hyun-Soon;Park, Kil-Houm
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.450-453
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 steps. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional (3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with it’s initial centroid value as the outstanding cluster’s centroid value. The proposed segmentation algorithm complements the defect of FCM algorithm, being influenced upon initial centroid, by calculating cluster’s centroid accurately And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the results of single spectral analysis.

  • PDF

(A Centroid-based Backbone Core Tree Generation Algorithm for IP Multicasting) (IP 멀티캐스팅을 위한 센트로이드 기반의 백본코아트리 생성 알고리즘)

  • 서현곤;김기형
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.424-436
    • /
    • 2003
  • In this paper, we propose the Centroid-based Backbone Core Tree(CBCT) generation algorithm for the shared tree-based IP multicasting. The proposed algorithm is based on the Core Based Tree(CBT) protocol. Despite the advantages over the source-based trees in terms of scalability, the CBT protocol still has the following limitations; first, the optimal core router selection is very difficult, and second, the multicast traffic is concentrated near a core router. The Backbone Core Tree(BCT) protocol, as an extension of the CBT protocol has been proposed to overcome these limitations of the CBT Instead of selecting a specific core router for each multicast group, the BCT protocol forms a backbone network of candidate core routers which cooperate with one another to make multicast trees. However, the BCT protocol has not mentioned the way of selecting candidate core routers and how to connect them. The proposed CBCT generation algorithm employs the concepts of the minimum spanning tree and the centroid. For the performance evaluation of the proposed algorithm, we showed the performance comparison results for both of the CBT and CBCT protocols.

Implementation of an automatic face recognition system using the object centroid (무게중심을 이용한 자동얼굴인식 시스템의 구현)

  • 풍의섭;김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.114-123
    • /
    • 1996
  • In this paper, we propose an automatic recognition algorithm using the object centroid of a facial image. First, we separate the facial image from the background image using the chroma-key technique and we find the centroid of the separated facial image. Second, we search nose in the facial image based on knowledge of human faces and the coordinate of the object centroid and, we calculate 17 feature parameters automatically. Finally, we recognize the facial image by using feature parameters in the neural networks which are trained through error backpropagation algorithm. It is illustrated by experiments by experiments using the proposed recogniton system that facial images can be recognized in spite of the variation of the size and the position of images.

  • PDF

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

Localization Method in Wireless Sensor Networks using Fuzzy Modeling and Genetic Algorithm (퍼지 모델링과 유전자 알고리즘을 이용한 무선 센서 네트워크에서 위치추정)

  • Yun, Suk-Hyun;Lee, Jae-Hun;Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • Localization is one of the fundamental problems in wireless sensor networks (WSNs) that forms the basis for many location-aware applications. Localization in WSNs is to determine the position of node based on the known positions of several nodes. Most of previous localization method use triangulation or multilateration based on the angle of arrival (AOA) or distance measurements. In this paper, we propose an enhanced centroid localization method based on edge weights of adjacent nodes using fuzzy modeling and genetic algorithm when node connectivities are known. The simulation results shows that our proposed centroid method is more accurate than the simple centroid method using connectivity only.