• Title/Summary/Keyword: Centrifuge tests

Search Result 224, Processing Time 0.025 seconds

A Study on Characteristics of Strength Increase and Bearing Capacity in Dredged and Reclaimed Soil due to Desiccation Shrinkage (준설토의 건조수축에 의한 강도증가 특성과 지지력에 관한 연구)

  • Yoo, Nam-Jae;Lee, Jong-Ho;Lee, Myung-Woog;Kim, Hyun-Joo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.101-111
    • /
    • 2000
  • This research is results of experimental and numerical works on characteristic of strength increase and bearing capacity in dredged and reclaimed soil due to desiccation shrinkage. For a soil sampled from southern coastal area in Korea, basic soil property tests and standard consolidation test with falling head permeability tests were carried out to obtain consolidational characteristics of soil. Double cone penetration test, laboratory vane test and unconfined compression test were also performed to investigate the change of shear strength with degree of desiccation. Model tests were performed in 1G environment and 30G level artificially accelerated condition by using the centrifuge model test facilities to investigate the bearing capacity of desiccated ground. Test results were analyzed by using the theoretical and load-settlement characteristics method proposed by Meyehof & Hanna(1978). On the other hands, the numerical technique, using the finite strain consolidation theory considering the effect of desiccation was used to estimate the appropriate time of using heavy construction equipments in field with respect to strength increase due to desiccation.

  • PDF

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

An Experimental Study on the Characteristics of Earth Pressure to a Debris-fall Prevention Wall (낙석방지벽에 작용하는 토압의 특성에 대한 실험적 연구)

  • Yoon, Nam-Sik;Park, Yong-Won;Park, Myoung-Soo;Choi, Yi-Jin
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This paper deals with the characteristics of earth pressure to the debris-fall prevention walls which usually are installed in front of steep slope. Such walls have narrow backfill width where the active soil wedge can not be developed fully. The earth pressure to such walls ue affected by the movement of wall and arching effects due to the friction developing on the surface of adjacent ground slope and wall and therefore cannot be analyzed and calculated reliably. The study is carried out through laboratory model tests using centrifuge test. Test results reveal that the earth pressure to the debris-fall prevention wall depends largely on the inclination angle of the ground slope and the wall movement. The earth pressure reduction due to wall movement was observed at the upper half of wall, while the arching effect was significant at the lower half especially in the case of steep ground slope. It can be said that from the result of this study in the design of a debris-fall prevention wall the earth pressure should be determined considering the inclination of ground slope and the condition of wall movement during and after construction.

  • PDF

Centrifuge Modeling on the Deformation Modes of Dredged Clay Slope (준설 점토사면의 변형양상에 관한 원심모델링)

  • Ahn, Kwangkuk;Kim, Jeongyeol;Zheng, Zhaodian;Lee, Cheokeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • In this study, the centrifugal tests were performed with varying the angle of slope such as 1:3, 1:2.5, and 1:2 in order to analyze the deformation and failure type of dredged clay slope for a short term. The displacement mode, displacement vector and the variation of pore pressure with the different slope angle were measured. As a results, even though the displacement in the slope after 4 months were developed in the case of 1:3 for the dredged slope, there are little problems to obtain the stability of dredged slope because the original construction section maintains. Also, in the case of 1:2.5 after 4 months the local slope failure occurred and in the case of 1:2 after 2 months the circle failure starting from the point of the tensile crack occurred. After reviewing the results, the maximum vertical displacement occurred at the crest of slope and maximum horizontal displacement was about double of maximum vertical displacement.

  • PDF

On the Critical Relative Displacement between Pile Shaft and Surrounding Soil (말뚝주변 마찰력과 한계상대변위)

  • Kim, Myoung Mo;Shin, Eun Chul;Ko, Hon Yim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.107-114
    • /
    • 1989
  • Model pile pull-out tests have been executed to investigate the characteristics of the critical relative displacement at which the critical pile skin resistance is mobilized. Test result shows that the critical relative displacement is neither constant nor pile size dependent, but it is the most closely related with the magnitude of the critical skin resistance. The empirical relationship between the two quantities has been established. Behavior of centrifuge physical models of skin-resistance-related problems has been investigated on a quantitative basis by a computational method. A pile downdrag problem has been employed as an example of the skin-resistance-related problems. A simple transfer function type method has been developed for the analysis of the downdrag. It is concluded from the analysis that centrifuge physical modeling of skin-resistance-related problems may lead to an erroneous result on an unconservative side, as may have been expected due to the violation of the similarity rule by the quantity of the critical relative displacement.

  • PDF

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.

Evaluation of Axial Bearing Capacity of Waveform Micropile by Centrifuge Test (원심모형실험을 통한 파형 마이크로파일의 연직 지지력 평가)

  • Jang, Young-Eun;Han, Jin-Tae;Kim, Jae-Hyun;Park, Heon-Joon;Kim, Sang-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.39-49
    • /
    • 2015
  • In this study, a series of centrifuge tests were performed in order to observe the bearing capacity of waveform micropile, a new concept of micropile that uses a modified jet grouting process. A total of six models were considered, conventional micropile, jet grouted pile, and four different shapes of waveform micropiles. The test results indicated that the waveform micropile effectively contributes to the increase of the bearing capacity compared to the micropile without the shear keys. Among the waveform micropiles, the model that has a relatively small space between the shear keys showed the most significant improvement of load capacity. Additionally, the ultimate load capacities of all piles were compared using well-known estimation method. As a result, P-S curve method and total settlement method with 25.4 mm were considered suitable to account ultimate load for the waveform micropile.

A Study on the Criteria for the Earthquake Safety Evaluation of Fill Dams (필댐의 내진 성능 평가 기준에 대한 고찰)

  • Choo, Yun-Wook;Lee, Sei-Hyun;Kim, Mu-Kwang;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.19-31
    • /
    • 2011
  • The current Korean criteria for seismic performance evaluated by dynamic analysis regulates that the horizontal displacement and vertical settlement of a dam body, including the static deformation, should be within 1% of the dam height. However, there has been weak theoretical support, so that the current criteria have to be validated. Korea is in a region of low or moderate seismicity located inside the Eurasian plate, and few earthquakes with considerable magnitudes and intensities have been recorded in the area. Therefore, in this study, published data measured in overseas countries were collected in order to construct a database and validate the current criteria. In addition, dynamic centrifuge tests and a parametric study using numerical simulations were performed in order to investigate the effect on the horizontal displacement and settlement of a dam body and to validate the current criteria.

Investigation of the Rotational Displacement of the Suction Anchor Subjected to the Inclined Pullout Load in Silty Sand (사질토 지반에서 경사 인발 하중을 받는 석션 앵커의 회전 거동 평가)

  • Bae, Jun-Sik;Jeong, Yeong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.267-273
    • /
    • 2020
  • Suction anchors are used for floating structures because they have advantages in installation and stability. Recently, the demand for floating structures requiring low allowable displacement has increased. Thus, it is strongly suggested that the displacement of the suction anchor be evaluated. However, conventional studies regarding suction anchors have concentrated on the capacity of the anchor, and research on the displacement of the anchor is limited. In particular, rotation is the primary behavior of a suction anchor subjected to an inclined load, and related information has been insufficient. Therefore, the main objective of this paper is to investigate the rotation behavior of a suction anchor via centrifuge model tests. The experimental parameters are the inclination of the pull-out load, anchor dimensions, and aspect ratio. The rotation values of suction anchors were compared using a series of load-rotation curves. The results show that the inclination of the load has a dominant influence on the rotation behavior of the suction anchor.