• Title/Summary/Keyword: Centrifugal pump

Search Result 314, Processing Time 0.022 seconds

Air-Water Two-Phase Flow Test Facility of a Single Stage Closed-type Centrifugal Pump (단단 밀폐형 원심펌프의 기액이상류 성능시험 설비)

  • Kim, S. Y.;Lee, S. L.;Kim, Y. T.;Kim, S. D.;Lee, Y. S.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.49-53
    • /
    • 2004
  • LabVIEW is mostly preferred to use in experiment, measurement and control as one of the useful thing in America and Europe. So, We tried performance experiment of a single-stage closed-type centrifugal pump by using the LabVIEW. The pump rpm and the shaft torque are measured by rpm sensor and torque sensor The test pump's maximum rpm, head, kW are 1,750, 13m, and 1.5kW, respectively The casing is made up with transparency acrylic for confirmation the flow patterns. We installed experimental equipment for air water two phase flow. This paper tries to analyze the single-phase flow characteristics through this air water two phase flow experimental apparatus. The performance results of a single-stage closed-type centrifugal pump satisfied reappearance and coincide well with head and coefficients according to the change of rpm.

  • PDF

Study on Design of Air-water Two-phase Flow Centrifugal Pump Based on Similarity Law

  • Matsushita, Naoki;Furukawa, Akinori;Watanabe, Satoshi;Okuma, Kusuo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • A conventional centrifugal pump causes a drastic deterioration of air-water two-phase flow performances even at an air-water two-phase flow condition of inlet void fraction less than 10% in the range of relatively low water flow rate. Then we have developed a two-phase flow centrifugal pump which consists of a tandem arrangement of double rotating cascades and blades of outer cascade have higher outlet angle more than $90^{\circ}$. In design of the two-phase flow pump for various sized and operating conditions, similarity relations of geometric dimensions to hydraulic performances is very useful. The similarity relations of rotational speed, impeller diameter and blade height are investigated for the developed impeller in the present paper. As the results, the similarity law of rotational speed and impeller diameter is clarified experimentally even in two-phase flow condition. In addition, influences of blade height on air-water two-phase flow performances indicate a little difference from the similarity relations.

A Study on the Performance Characteristics of the 2-D Centrifugal Turbomachinery (2차원 원심식 터보기계의 성능특성에 관한 연구)

  • 최민선;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.43-51
    • /
    • 1994
  • The design technique of turbo pumps has been developed due to an increasing demand from related industrial fields. But infant stage of turbomachinery in the domestic industry needs more fundamental design method. Among various types of pumps, centrifugal pump was chosen because of its wide industrial application. It is difficult to decide the correct specification of centrifugal impeller, because of its complex flow analysis at the inlet, passage and outlet. This study is limited on the impeller blade design and its related performance analysis.

  • PDF

Design Optimization of a Centrifugal Pump Impeller using RSM and Design of Volute (반응표면기법을 이용한 원심펌프 임펠러 최적설계 및 벌류트 설계)

  • Pyun, Kwon-Bum;Kim, Joon-Hyung;Choi, Young-Seok;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected, and effect of the design parameters on the performance of the pump was analyzed by using Response Surface Methodology(RSM) to optimized impeller. In addition, total pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

Hydrodynamic forces of impeller shroud and wear-ring seal on centrifugal pump (고성능 원심펌프에서 임펠러 시라우드 및 마모 시일의 유체가진력 해석)

  • Ha, Tae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.102-110
    • /
    • 1998
  • The analysis of lateral hydrodynamic forces in the leakage path between a shrouded pump impeller through wear-ring seal and its housing is presented. Governing equations are derived based on Bulk-flow and Hirs' turbulent lubrication model. By using a perturbation analysis and a numerical integration method, governing equations are solved to yield leakage and rotordynamic coefficients of force developed by the impeller shroud and wear-ring seal. The variation of rotordynamic coefficients of pump impeller shroud and wear-ring seal is analyzed as parameters of rotor speed, pressure difference, shroud clearance, wear-ring seal clearance, and circumferential velocity at the entrance of impeller shroud for a typical multi-stage centrifugal pump.

A Study on the Shaft End Displacement of the Centrifugal Pump under Nozzle Loads using Compliance Coefficients (컴플라이언스 계수에 의한 노즐하중 하에서의 원심펌프의 축단변위에 관한 연구)

  • 최복록;박진무;김광은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.233-239
    • /
    • 2000
  • Investigation results are presented fur the shaft end displacements due to the elastic deformation of the casing and support in double suction centrifugal pump. Suction and discharge nozzles of the pump are subject to external piping loads and, in API 610, maximum values of their components are specified. This means that each nozzle can be subject to various combinations of loading conditions. Considering upper and lower criteria of each load, we must perform for the 4,096 load cases, and assign the direction and range of the loads. So, this paper develops an efficient procedure(Compliance Coefficient Method) to calculate the shaft end displacements(@ coupling) to determine whether satisfying the pump's standard. Also, we analyzed the effects of the casing and support thickness on shaft end displacements.

  • PDF

Investigation on the Internal Flow Characteristics of the Low Specific Speed Centrifugal Pump with Circular Casing

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.404-412
    • /
    • 2008
  • As a suitable volute configuration in the range of low specific speed, circular casing is suggested in this study. The internal flows in a centrifugal pump with the circular and spiral casings are measured by PIV and analyzed by CFD. The results show that the head and efficiency of the pump by a circular casing of very small radius are almost same as those by the spiral casing. Even at the best efficiency point, the internal flow of the pump by circular casing is asymmetric, and vortex and strong secondary flow occurs in the impeller passage. The radial velocity becomes higher remarkably only near the region of the discharge throat. The flow in the impeller outlet is strongly controlled by the circular casing because the velocity distribution almost does not affected by the position of the impeller blades.

Development of Speed Increaser for High Speed Machine Pump which Considered the Noise/Vibration (소음/진동을 고려한 고속머신 펌프용 증속기 개발)

  • 이동환;박노길;김병옥;이형우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.363-369
    • /
    • 2004
  • Vibration/noise analysis as well as strength of gear teeth, roller bearing life. joural bearing design are considered in order to develop the high-speed machine centrifugal pump which had a speed increaser. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors and the transmitted errors of the gearing are considered. shows that. at the operating speed. there are not the critical speed. A high-speed machine centrifugal pump was made in order to evaluate developed speed increaser. Also, strict API standard were introduced for reliability evaluation of developed speed increaser, and performance evaluation were carried out. The result that evaluation items about bearing vibration, shaft vibration, noise, and lubrication temperature were selected, and were tested. a high-speed machine centrifugal pump were able to know what were satisfied with API standard all.

Experimental Flow Visualisation of an Artificial Heart Pump

  • Tan, A.C.C.;Timms, D.L.;Pearcy, M.J.;McNeil, K.;Galbraith, A.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.210-216
    • /
    • 2004
  • Flow visualization techniques were employed to qualitatively visualize the flow patterns through a 400% scaled up centrifugal blood pump. The apparatus comprised of a scaled up centrifugal pump. high speed video camera. Argon Ion Laser Light Sheet and custom coded particle tracking software. Reynolds similarity laws are applied in order to reduce the rotational speed of the pump. The outlet (cutwater) region was identified as a site of high turbulence and thus a likely source of haemolysis. The region underneath the impeller was identified as a region of lower flow.

Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump (원심다단펌프용 디퓨저-리턴채널의 유동특성)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.