• Title/Summary/Keyword: Centrifugal forces

Search Result 126, Processing Time 0.038 seconds

Development of Shrink-Fit Tool Holder using Shape Memory Alloys (형상기억합금을 이용한 열박음 공구홀더 개발)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Kim, Byung-Sub;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.889-894
    • /
    • 2010
  • Conventional shrink-fit tool holders have positive features, such as high accuracy, high strength, high stiffness and low sensitivity to centrifugal forces, but they require heavy investments for heating and cooling equipment. Generally the heating equipment has to heat the tool holder up to $200{\sim}300^{\circ}C$ for tool changes. This paper introduces a novel shrink-fit tool holder that is able to unclamp a tool at $40{\sim}50^{\circ}C$. This feature makes it possible to switch between the clamped and unclamped states by using a simple device, which has lower power, smaller size and lower cost than the heating equipment of the conventional shrink-fit tool holders. The proposed shrink-fit tool holder is able to expand its tool hole by using the shape memory alloys which are integrated in the tool holder body. Performances of the SMA shrink-fit tool holder were evaluated experimentally. The experimental results confirm that the proposed tool holder is feasible in aspects of clamping/unclamping operations, clamping force and repeatability of tool setup.

Three-dimensional Rarefied Flows in Rotating Helical Channels (헬리컬 채널내부의 3차원 희박기체유동)

  • Hwang, Y.K.;Heo, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.625-630
    • /
    • 2000
  • Numerical and experimental investigations are peformed for the rarefied gas flows in pumping channels of a helical-type drag pump. Modern turbomolecular pumps include a drag stage in the discharge side, operating roughly in $10^{-2}{\sim}10Torr$. The flow occurring in the pumping channel develops from the molecular transition to slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic particle approach through the use of the direct simulation Monte Carlo(DSMC) method. The flow in a pumping channel is three-dimensional(3D), and the main difficulty in modeling a 3D case comes from the rotating frame of reference. Thus, trajectories of particles are no longer straight lines. In the Present DSMC method, trajectories of particles are calculated by integrating a system of differential equations including the Coriolis and centrifugal forces. Our study is the first instance to analyze the rarefied gas flows in rotating frame in the presence of noninertial effects.

  • PDF

Measurement of Inward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section (단순변형율 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.765-770
    • /
    • 2000
  • Hot-wire measurements are reported on the developing turbulent flows subject to plane rate of strain in a rotating $90^{\circ}$ dog bend. The cross-section of the bend varies from $100mm{\times}50mm$ rectangular shape at the bend inlet gradually to the $50mm{\times}100mm$ shape at the bend outlet with remaining a constant area. Data signals from the rotating test section are transmitted through a slip ring to the personal computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynolds stress components were calculated from the equations which correlate the fluctuating and mean voltage values measured with rotating a slant type hot-wire into 6 orientations. The effects of Coriolis and centrifugal forces on the mean motions and turbulence structures are investigated with respect to rotational speed.

  • PDF

The study of wheel unloading change in case of tilting actuation (틸팅차량의 곡선부 틸팅동작 시 윤중감소율 병화에 대한 고찰)

  • Kim Nam-Po;Kim Jung-Seok;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.435-442
    • /
    • 2004
  • Tilting train allow the train to pass curve at higher speed without affecting passenger comfort. As the tilting trains run curve track about 30$\%$ higher than non-tilting trains, the centrifugal force and dynamic force will be higher. Therefore it is very important for tilting train to ensure safety against derailment, and to reduce the lateral track forces by applying light-weight design, optimized suspension design and steering mechanism. The 180 km/h Korean Tilting Train(TTX) which is now developing as a part of the Korean National R & D project, was designed and analytically verified to meet these special requirements. This paper describes the analytic study to verify the safety against derailment, especially on the wheel unloading in case of tilting actuation. The severest curve geometry and curving speed was assumed, the tilting control pattern was also assumed as trapezoidal force function applied to tilting bolster and bogie frame. For the comparison, the operation with the speed of tilting train without tilting actuation was numerically simulated and the operation with the balanced speed without tilting actuation was also numerically simulated. Through the numerical simulation of various operating case, we found that derailment quotients, wheel unloading and Q/P was not affected by tilting actuation and that the bogie of TTX was nicely designed to satisfy the safety against the derailment.

  • PDF

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Dynamic Response of Curved Bridges by Support Arrangement (받침배치에 따른 곡선교의 동적응답에 관한 연구)

  • 김상효;이용선;김태열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.185-191
    • /
    • 2002
  • In this study a 3-dimensional analytical model is developed, which can analyses dynamic responses of curved bridges subject to moving vehicles. A 5-axle semi-trailer is modeled to simulate the actual tire forces that are redistributed by vehicle rolling effect due to the centrifugal force. The 1-span curved bridge with two steel box girders is modeled using the frame elements. The dynamic response characteristics of curved box girder bridges are examined and compared for two different support conditions. One is the case that two shoes are arranged at the outer sides of box girders with larger space between the two shoes and the other is that two shoes at the center of each box girder. In the curved bridges, the dynamic effect of moving vehicles influences the reaction force much more than other responses, such as displacement or stress, especially the upward reaction of inner-radius shoes. It is more advantageous for the reaction considering dynamic effect when shoes are arranged further at the outer sides of box girders than when shoes at the center of each box. The shoes for curved bridges with two-box girder system should be arranged to have larger distance.

  • PDF

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow (터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析))

  • Cho, Kang-Rae;Oh, Jong-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

Prediction of the Strength and Vibration Safety of the 30ton Thrust Turbopump Turbine by Finite Element Analysis (30톤 추력급 터보펌프 터빈의 구조 강도 및 진동 해석을 통한 안정성 예측)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Lee, Kwan-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.20-28
    • /
    • 2004
  • Static and dynamic structural analyses of a turbine bladed-disk for a liquid rocket turbopump are performed to investigate the safety level of strength and vibration at design point. During operation, turbopump is exposed to various external loads. Therefore, the effects of them should be carefully considered and properly modeled. First, due to the high rotational speed of the turbopump, effects of centrifugal forces are considered in the structural analysis. Thermal load caused by severe temperature differences is also considered. A three dimensional finite element method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. From the analysis results, characteristics of stress distribution and vibration were thoroughly examined and investigated.

Design Alterations of a Hydraulic Press Machine for the Improved Stability (구조 안정성 향상을 위한 유압프레스 설계개선)

  • Shin, Yun Ho;Ro, Seung Hoon;Kim, Young Jo;Lee, Dae Woong;Kim, Sang Hwa;Kil, Sa Geun;Yi, Il Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.38-43
    • /
    • 2019
  • In this study, a hydraulic press structure has been investigated in order to enhance the precision machining and the productivity, which are generally damaged by the structural deformation from the pressure and the vibrations originated from the centrifugal forces from the rotating parts of the machine. Computer simulation based on the finite element method has been utilized for the analysis of static and dynamic characteristics to investigate each component's critical points, and to further improve the static and dynamic stabilities of a hydraulic press structure. The result shows that the deformations and the vibrations of the machine could be reduced 35% without increasing the weight of the machine.