• Title/Summary/Keyword: Central neuron

Search Result 100, Processing Time 0.03 seconds

Modification in the Responsiveness of Cat Dorsal Horn Cells during Carrageenin-Induced Inflammation (피부염에 의해 유발된 척수후각세포의 Activity 변동에 관한 연구)

  • Kim, Kee-Soon;Shin, Hong-Kee;Kim, Jin-Hyuk;Lee, Ae-Joo;Kang, Suck-Han
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.151-167
    • /
    • 1989
  • The present study was undertaken to investigate modification in electrophysiological characteristics of cat dorsal horn cells resulting from carrageenin-induced inflammation. The followings were studied; 1) the time-course of changes in responses of the WDR (wide dynamic range) cell 1-3h after subcutaneous injection of carrageenin in its receptive field; 2) the responses of the same dorsal hern cells before and after induction of inflammation; 3) the effect of inflammation on the responsiveness of dorsal horn neurons to algogens (bradykinin & potassium); and 4) the effect of inflammation on the activity of WDR cell following administration of indomethacin and clonidine. Though responses of WDR neuron were increased dramatically during first 1h, the maximal enhancement was observed 3h after induction of inflammation especially by repetitive light tactile stimulus. Following carrageenin injection the majority of WDR neurons (10/15 units) showed enhanced responses to all the mechanical stimuli while in 3 cases responsiveness were intensified during activation by one tactile stimulus (brush or pressure). One cell was unaffected by inflammation and in another case the response was enhanced only to noxious stimulus. Five of 9 cells that could initially be driven by noxious stimulus were activated more strongly by same stimulus and even by tactile stimulus (pressure) following inflammation. In 2 cases neurons were sensitized only to noxious stimulus whereas in another 2 cells that did not show enhanced responses to noxious stimulus responses to light tactile stimulus (pressure) appeared after inflammation. Of 16 LT cells tested 6 responded to squeeze while 4 showed the characteristics of WDR cell following inflammation. No modification in responsiveness was recognized in 3 cells whereas response to only brush was enhanced in another 3 neurons. Following carrageenin injection responses of LT cell to bradykinin or $K^{+}$ were not altered whereas those of WOR neurons to bradykinin or $K^{+}$ were suppressed in 22.2% and 33.3% of cases, respectively. In two of 8 activity of HT cells were inhibited by bradykinin while in five of 8 responsiveness to $K^{+}$ were rather enhanced by inflammation. In the rest inflammation was ineffective. In inflammation-induced animal the receptive field of LT cell was not changed whereas those of WDR cell and HT cell were tremendously expanded. The enhanced responses of WDR neurons to mechanical stimuli resulted from inflammation were suppressed by intravenously injected indomethacin and clonidine suggesting that postaglandin is involved in inflammation-induced sensitization of these cells. The involvement of peripheral and central mechanisms in the modification in responsiveness of dorsal horn cells in the carrageenin-induced inflammation was discussed.

  • PDF

Pretreatment with GPR88 Agonist Attenuates Postischemic Brain Injury in a Stroke Mouse Model (GPR88 효현제의 전처리에 의한 뇌졸중후 뇌손상 감소효과 연구)

  • Lee, Seo-Yeon;Park, Jung Hwa;Kim, Min Jae;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.939-946
    • /
    • 2020
  • Stroke is one of the leading causes of neurological disability worldwide and stroke patients exhibit a range of motor, cognitive, and psychiatric impairments. GPR88 is an orphan G protein-coupled receptor (GPCR) that is highly expressed in striatal medium spiny neurons; its deletion results in poor motor coordination and motor learning. There are currently no studies on the involvement of GPR88 in stroke or in post-stroke brain function recovery. In this study, we found a decrease in GPR88 protein and mRNA expression levels in an ischemic mouse model using Western blot and real-time PCR, respectively. In addition, we observed that, among the three types of cells derived from the brain (brain microvascular endothelial cells, BV2 microglial cells, and HT22 hippocampal neuronal cells), the expression of GPR88 was highest in HT22 neuronal cells, and that GPR88 expression was downregulated in HT22 cells under oxygen-glucose deprivation (OGD) conditions. Moreover, pretreatment with RTI- 13951-33 (10 mg/kg), a brain-penetrant GPR88 agonist, ameliorated brain injury following ischemia, as evidenced by improvements in infarct volume, vestibular-motor function, and neurological score. Collectively, our results suggest that GPR88 could be a potential drug target for the treatment of central nervous system (CNS) diseases, including ischemic stroke.

Effect of Curcumin Derivatives on Heme Oxygenase-1 Expression in HT22 Cells (HT22 세포에서 Curcumin 유도체가 Heme Oxygenase-1 발현에 미치는 효과)

  • Cheong, Yong-Kwan;Lee, Yun-Jung;Chun, Hyun-Ja;Ryu, Il-Hwan;Jee, Yeon-Ju;Chae, Gwon-U;Kim, Young-Sook;Shon, Ji-Ue;Kang, Hyun-Gyu;Lee, Sung-Hee;An, Ren-Bo;Chung, Hun-Taeg;Pae, Hyun-Ock
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • Curcumin, of which a critical characteristic is the capacity of crossing the blood-brain barrier, has been reported to induce the expression of neuroprotective heme oxygenase (HO)-1. The aim of this study is to compare HO-1-inducing capacity and neuroprotective activity of curcumin, its demethoxy (demethoxycurcumin, DMC; bis-demethoxycurcumin, BDMC) and hydrogenated derivatives (tetrahydrocurcumin, THC) in mouse hippocampal HT22 cells. Curcumin attenuated glutamate-induced cell death through HO-1 expression. DMC lacking a methoxy group on one of the aromatic rings possessed slightly lower activity in HO-1 expression and neuroprotection than curcumin. Similarly, BDMC, which lacks two methoxy groups on both of the aromatic rings, showed less activity than curcumin. These findings suggest that the presence of methoxy groups on the aromatic ring is required to enhance neuroprotective HO-1 expression. The reduction of the diarylheptadienone chain of curcumin by hydrogen, as in THC, was accompanied by a complete loss of ability to induce HO-1 expression and neuroprotection, suggesting that the conjugated double bonds of the central seven-carbon chain of curcumin may be essential for its ability to induce neuroprotective HO-1 expression. Our findings may provide useful information for further development of neuroprotective HO-1 inducers.

Effects of Root of Cibotii Rhizoma on Neuronal Damage of Spinal Cord Contusion Injury in Rats (구척(狗脊)이 흰쥐의 척수압박에 의한 신경세포 손상에 미치는 영향)

  • Park, Won-Sang;Kim, Eun-Seok;Shin, Jung-Won;Kim, Bum-Hoi;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.2
    • /
    • pp.1-15
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effects of root of Cibotii rhizoma(CR) ethanol extract on the tissue and neuronal damage of the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. CR was orally given once a day for 7 days after SCI. Tissue damage and nerve fiber degeneration were examined with cresyl violet and luxol fast blue(LFS) histochemistry. HSP72(as neuronal damage marker), MAP2(as nerve fiber degeneration marker), c-Fos(immediate early gene), and Bax(pro-apoptotic molecule) expressions were examined using immuno-histochemistry. Individual immuno-positive cells expressing HSP72, MAP2, c-Fos and Bax were observed on the damaged level and the upper thoracic and lower lumbar spinal segments. Results : 1. CR reduced degeneration of nerve fibers and motor neuron shrinkage in the ventral horn of the lower lumbar spinal segment, but generally it did not seem to ameliorate the tissue injury following SCI. 2. CR reduced demyelination in the ventral and lateral funiculus of the lower lumbar spinal segment. 3. CR reduced HSP72 expression on the neurons in the peri-central canal gray matter adjacent to the damaged region. 4. CR strengthened MAP2 expression on the motor neurons in the ventral horn and on nerve fibers in the lateral funiculus of the lower lumbar spinal segment. 5. CR reduced c-Fos positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. 6. CR reduced Bax positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. Conclusions : These results suggest that CR plays an inhibitory role against secondary neuronal damage and nerve fiber degeneration. following SCI.

Effects of Chilbokyeum on the Cerebral Cortex Neuron injured by Glucose Oxidase (칠복음(七福飮)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi, Kong-Han;Park, Seung-Taeck;Ryu, Do-Gon;Choi, Min-Ho;Um, Sang-Sub;Hea, Jin-Young;Kang, Sung-Do;Go, Jeong-Soo;Sou, Eui-Suk;Sung, Yeun-Kyung;Cho, Nam-Su;Lee, Chun-Woo;Whang, Il-Taeck;Sun, Sung-Kyu;Ryu, Young-Su
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.199-208
    • /
    • 1999
  • As the average life span have been lengthened and the rate of senile population have been raised, chronic degenerative diseases incident to aging has been increased rapidly and become a social problem. With this social background, recently, the facts that oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease have been turned out, and accordingly lots of studies on the mechanism of the toxic effects of OR on nerves, the diseases caused by OR and the approaches to curing the diseases have been made. The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Chilbokyeum(CBY) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay and MTT assay 2. GO, a oxygen radical, increased lipid peroxidation and the amount of LDH. 3. CBY have efficacy of decreasing lipid peroxidation. 4. CBY have efficacy of decreasing the amount of LOH. From the above results, It is concluded that Chilbokyeum has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And Chilbokyeum is thought to have certain pharmacological effects on controlling over aging and treating Dementia. Further clinical study of this pharmacological effects of Chilbokyeum should be complemented.

  • PDF

The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro

  • Lu, Lin;Dong, Haixia;Liu, Guixiang;Yuan, Bin;Li, Yizhao;Liu, Huaxiang
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.532-539
    • /
    • 2014
  • Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC ($50{\mu}mol/L$), gp120 (500 pmol/L) plus ddC ($50{\mu}mol/L$), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC ($50{\mu}mol/L$) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC ($50{\mu}mol/L$) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (> $25{\mu}m$), whereas ddC mainly affected small diameter DRG neurons (${\leq}25{\mu}m$). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies.

The Effects of Microcurrent Stimulation on the Astrocytes Proliferation at Injured Brain of Rabbit (극저전류자극이 손상된 토끼 뇌의 별아교세포 증식에 미치는 효과)

  • Kim, Ji-Sung;Min, Kyoung-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.3
    • /
    • pp.107-119
    • /
    • 2002
  • Astrocyte, which shares the greatest part of the brain (about 25%), is a land of glial cell that composes the central nervous system along with microglia, ependymal cell and oligodendroglia. It has 7-9nm of fibers in its cytoplasma, which are composed of glial fibrillary acidic protein (GFAP) and vimentin. As for the functions of the astrocyte, it has, so far, been supposed that the astrocyte will play a cytoskeletal role in maintaining the structure of the cerebrum, play a role as a blood-brain barrier so that it can induce migration of the neuron in its development and substances in the blood cannot go into the nervous tissue, and a role of immunology and phagocytosis. However, it was revealed today that it will be a role in preventing expansion of injury by attaching itself to the connective tissue such as the vessel and the pia mater when the nervous tissue or the arachnoid is injured. Microcurrent stimulation can control current, on the basis of A unit. That is, with such devices using it, it is possible to sense, from the outside, the injured current(wound current) of the lesion and to change it into the normal current, thereby promoting the restoration of the cells. In order to examine the effects of microcurrent stimulation on the injured astrocytes in the rabbits, this study was conducted with 24 New Zealand White Rabbit as its subjects, which were divided into 8 animals of the experiment group and 16 animals of the control group. After the animals in the experiment group were fixed to the stereotaxic apparatus, their hair was removed and their premotor area(association area) perforated by the micro-drill for skull-perforation with the depth of 8mm from the scalp. In one week after the injury, 4 animals in the control group and 8 animals in the experiment group were sacrificed and examined with immunohistochemical method. And in three weeks, the remaining 4 animals in the control group and 8 animals in the experiment group were also sacrificed and examined with the same way. The conclusion has been drawn as follows : In the control group sacrificed in one week after the injury, the astrocytes somewhat increased, compared with the normal animals, and in the group sacrificed in three weeks after the injury, they increased more (p < 0.05). The experiment group A in one week showed a little increase, but there was no significant differences, but the experiment group in three weeks showed more increase, compared with the experiment group in one week (p < 0.05). The experiment group B in one week showed more increase than the control group or the experiment group A, and the experiment group in three weeks showed more increase than the experiment group in one week (p < 0.05). Among the astrocytes, fibrous astrocytes were mostly observed, increasing as they are close to the lesion, and decreasing as they are remote from it. The findings show that microcurrent can cause the astrocytes to proliferate and that it will be more effective to stimulate the cervical part somewhat remote from the lesion rather than to directly stimulate the part of the lesion. Thus, microcurrent stimulation can be one of the methods that can activate the reaction of astrocytes, which is one of the mechanism for treating cerebral injury with hemorrhage. Therefore, this study will be used as basic research data for promoting restoration of functions in the patient with injury in the central nervous system.

  • PDF

Smoking Status and Serum NSE Level, as Prognostic Factors in Adenocarcinoma of Lung (원발성 폐선암 환자에서 예후인자로 흡연 및 NSE 수치의 의의)

  • Kim, Hee Kyoo;Ok, Chul Ho;Jung, Mann Hong;Jang, Tae Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.6
    • /
    • pp.582-589
    • /
    • 2005
  • Background : The incidence of lung adenocarcinoma, which is more prevalent in women and nonsmokers, is increasing. The aim of this study was to determine the prognostic factors of an adenocarcinoma of the lung. Material and method : The clinical information of patients diagnosed with an adenocarcinoma of the lung at the Kosin University Gospel Hospital from January 1994 to July 2004 was reviewed retrospectively. The survival time of these patients was analyzed by the patient's age, gender, performance status, weight loss, smoking history, location of the primary tumor, clinical stage, serologic tumor markers, and treatment modality. Results : For all 422 patients with an adenocarcinoma of the lung, 247 (58.5%) were male, and their mean age was 59.8 years the. The majority of patients were smokers (58.3%), and the tumors were located in the periphery (59.7%). In the smokers, the tumor was located more in the central airway compared to the non-smokers (42.8% vs. 31.9%, p=0.12). The overall median survival time was 390 days (95% CI;304-436 days). Univariate survival analysis revealed that an older age (${\geq}65$ years old), male, weight loss, smoker, central type, advanced clinical stage, elevated serum carcinoembryonic antigen (CEA, >5 ng/ml) and neuron specific enolase (NSE, >15 ng/ml), and the supportive care only were significantly poor prognostic factors. The median survival time was shorter in the smokers than nonsmokers (289 days vs. 533 days, p<0.001). In addition, it was also shorter in the elevated NSE group than in the normal range group (207 days vs. 469 days, p<0.001). Multivariate analysis showed that age, clinical stage, serum NSE, smoking status, and treatment modality were independent predictors of survival (hazard ratios: 1.68, 1.94, 1.92, 2.39 and 1.57, respectively). Conclusions : Smoking is an important prognostic factor in an adenocarcinoma of the lung, but not gender. This suggests that the better prognosis of women is more related with the lower rate of smoking. In addition, the elevated serum NSE is also an important prognostic in an adenocarcinoma of the lung.

Changes of c-Fos Immunoreactivity in Midbrain by Deep Pain and Effects of Aspirin (심부통증이 흰쥐 중뇌에 미치는 c-Fos 면역반응성의 변화와 아스피린의 효과)

  • Jung, Jin A;Yoo, Ki Soo;Hwang, Kyu Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.695-701
    • /
    • 2003
  • Purpose : It had been suggested that pain arising from deep somatic body regions influences neural activity within periaqueductal gray(PAG) of midbrain via distinct spinal pathways. Aspirin is one of the popular non-steroidal anti-inflammatory drugs used in the management of pain. Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. This study was prepared to investigate changes of c-Fos immunoreactivity in midbrain by deep pain and effects of aspirin. Methods : Male Sprague-Dawley rats were injected with 0.1 mL of 5% formalin in the plantar muscle of the right hindpaw. For experimental group II, aspirin was injected intravenously before injection of formalin. An aspirin-untreated group was utilized as group I. Rats were sacrificed at 0.5, 1, 2, 6 and 24 hours after formalin injection. Rat's brains were removed and sliced in rat brain matrix. Brain slices were coronally sectioned at interaural 1.00-1.36 mm. Serial sections were immunohistochemically reacted with polyclonal c-Fos antibody. The numbers of c-Fos protein immunoreactive neurons in ventrolateral periaqueductal gray(VLPAG) and dorsomedial periaqueductal gray(DMPAG) were counted and analyzed statistically with Mann-Whitney U tests. Results : Higher numbers of c-Fos protein immunoreactive neurons were found in VLPAG. In both VLPAG and DMPAG of formalin-treated group, the numbers of c-Fos protein immunoreactive neurons were significantly higher at all time points than the formalin-untreated group, which peaked at two hours. The numbers of c-Fos immunoreactive neuron of the aspirin-treated group were less compared to the aspirin-untreated group at each time point. Conclusion : These results provide some basic knowledge in understanding the mechanism of formalin-induced deep somatic pain and the effects of aspirin.

Inhibitory Effects of ${\gamma}$-Aminobutyric Acid on the Contractility of Isolated Rat Vas Deferens (흰쥐의 적출 정관 수축성에 대한 ${\gamma}$-Aminobutyric Acid의 억제작용)

  • Ahn, Ki-Young;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.382-395
    • /
    • 1992
  • GABA is an inhibitory neurotransmitter in central nervous system and produce sedative, antianxiety and muscle reaxing effects via $GABA_A$ receptor or $GABA_B$ receptor. Recently it is known that GABA is widely distributed throughout peripheral organs and may playa physiological role in certain organ. The vas deferens is innervated by species-difference. These study, therefore, was performed to investigate the mode and the mechanism of action of GABA on the norepiniphrine-, ATP- and electric stimulation-induced contraction of vas deferens of rat. Sprague-Dawley rats were sacrificed by cervical dislocation. The smooth muscle strips were isolated from the prostastic portion and were mounted in the isolated muscle bath. PSS in the bath was aerated with 95/5%-$O_2/CO_2$ at $33^{\circ}C$. Muscle tensions were measured by isometric tension transducer and were recorded by biological recording system. 1. GABA, muscimol, a $GAB_A$ agonist, and baclofen, a $GABA_B$ agonist inhibited the electric field stimulation(EFS, 0.2Hz, 1mSec, 80 V, monophasic square wave)-induced contraction with a rank order of potency of GABA greater than baclofen greater than muscimol. 2. The inhibitory effect of GABA was antagonized by delta aminovaleric acid(DAVA), a $GABA_B$ antagonist, but not by bicuculline, a $GABA_A$ mtagonist. 3. The inhibitory effect of baclofen was antagonized by DAVA, but the effect of muscimol was not antagonized by bicuculline. 4. Exogenous norepinephrine(NE) and ATP contracted muscle strip concentration dependently, but the effect of acetylcholine was negligible : and GABA did not affect the NE-and ATP-induced contractions. 5. GABA, baclofen and muscimol did not affect basal tone, and GABA did not affect the NE-and ATP-induced contractionsm 6. EFS-induced contraction was including 2 distinctable components. The first phasic component was inhibited by beta gamma-methylene ATP(mATP), a desensitizing agent of APT receptor and the second tonic component was reduced by pretreatment of reserpine(3 mg/Kg, IP). 7. GABA inhibited the EFS-induced contraction of reserpinized strips, but not the mATP-treated strips. These results suggest that in the prostatic portion of the rat vas deferens, adrenergic and purinergic neurotransmissions are exist, and GABA inhibits the release of ATP via presynaptic $GABA_B$ receptor on the excitatory neurons.

  • PDF