• Title/Summary/Keyword: Central crack

Search Result 143, Processing Time 0.035 seconds

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

Reconstructing Flaw Image Using Dataset of Full Matrix Capture Technique (Full Matrix Capture 데이터를 이용한 균열 영상화)

  • Lee, Tae-Hun;Kim, Yong-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

The Effect of Insulating Material on WLCSP Reliability with Various Solder Ball Layout (솔더볼 배치에 따른 절연층 재료가 WLCSP 신뢰성에 미치는 영향)

  • Kim, Jong-Hoon;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Hong, Joon-Ki;Byun, Kwang-Yoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A major failure mode for wafer level chip size package (WLCSP) is thermo-mechanical fatigue of solder joints. The mechanical strains and stresses generated by the coefficient of thermal expansion (CTE) mismatch between the die and printed circuit board (PCB) are usually the driving force for fatigue crack initiation and propagation to failure. In a WLCSP process peripheral or central bond pads from the die are redistributed into an area away using an insulating polymer layer and a redistribution metal layer, and the insulating polymer layer affects solder joints reliability by absorption of stresses generated by CTE mismatch. In this study, several insulating polymer materials were applied to WLCSP to investigate the effect of insulating material. It was found that the effect of property of insulating material on WLCSP reliability was altered with a solder ball layout of package.

  • PDF

A Study on Mechanical Properties of High Strength Concrete Performed by Full Scaled Mock-up Test (1:1 실부재 Mock-up Test를 통한 고강도 콘크리트의 역학적 특성에 관한 연구)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.981-984
    • /
    • 2008
  • The super tall building above 100 floors is required that each floor's height is more than 4 meters, and each core wall's thickness is more than 60cm. Therefore, for the successive accomplishment of super tall building, the full scale mock-up test was required. The test results are as follows; Real strength of core wall was satisfied with design strength at 28 days regardless of types of strength, and according to the consolidation effect, lower part's strength was a little higher than upper part's strength. Lateral force of HSC was evaluated with max. $4.5ton/m^2$, and hydration temperature of mock-up test was evaluated that maximun heat of central part revealed about $80^{\circ}C$ at 70MPa and $65^{\circ}C$ at 50MPa, and, the difference between inner and outter part revealed about $30^{\circ}C$ at 70MPa and $12^{\circ}C$ at 50MPa. Also, no crack by hydration temperature was not shown on the surface.

  • PDF

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

Effect of Compressive Strength and Curing Condition on the Direct Tensile Strength Properties of Ultra High Performance Concrete (압축강도 및 양생조건에 따른 초고성능 콘크리트의 직접인장강도 특성)

  • Park, Ji Woong;Lee, Gun Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.175-181
    • /
    • 2017
  • The purpose of this study is evaluating the characteristics of tensile strength of UHPC and examining tensile performance of notched specimens by direct tensile test. For test variables, 120, 150, and 180MPa of target design standard strength were aimed at. With general water curing and $90^{\circ}C$ high temperature steam as curing conditions, the properties were reviewed. Overall, it was represented that the specimens of notch-type direct tensile strength concrete was effective in inducing central cracks compared with existing direct tension specimens. Through this, it was judged that data construction with high reliability was possible. Above all, in a graph of direct tensile strength and strain, in the case of steam curing at high temperature, there was great difference of initial tensile strength compared with water curing. As passing of ages, an aspect that the difference gradually decreased was shown. Maximum tensile strength was found to increase steadily with increasing age for all target design strengths in water curing, in the case of steam curing, the tendency to increase significantly due to the initial strength development effect at 7 days of age. The initial crack strength increases with age in case of underwater curing, in the case of steam curing, it was higher than that of water curing in 7 days, while the strength of 28 days was lowered. In this part, it is considered necessary to examine the arrangement condition of the steel fiber.

Occurrence of Callipogon relictus Semenov (Coleoptera: Cerambycidae) in the Gwangneung Forest, Korea with Suggestions for the Conservation (광릉숲에서의 장수하늘소(딱정벌레목; 하늘소과) 서식실태 조사결과 및 보전을 위한 제언)

  • Byun, Bong-Kyu;Kwon, Tae-Sung;Weon, Gap-Jae;Jo, Dong-Gwang;Lee, Bong-Woo;Lee, You-Mi;Choi, Hyeok-Jae;Kim, Cheol-Hak;Lee, Seung-Hwan;Bae, Yang-Seop;An, Seung-Lak;Hong, Ki-Jeong;Park, Shin-Young
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.19-25
    • /
    • 2007
  • A survey to investigate the inhabitation of Callipogon relictus Semenov and evaluate the population of the species in the Gwangneung Forest was conducted during last seven years. During the study, a female was observed in the forest in 2006 which confirmed a possibility of the inhabitation with a small population. Fortunately, a ovipositing female was observed in the forest during this study period in 2006. The female laid more than 20 eggs singly in the crack of bark of the Carpinus laxiflora Blume. We collated the all available data for the species with the present study including the previous reports to provide the information far the conservation plan. It will be needed the long term monitoring and various efforts for the conservation of the species will be need hereafter.

Hybrid Powder-Extrusion Process Involving the Control of Temperature Dwelling Time for Fabricating Spur Gears with Required Properties (온도 유지시간 제어를 적용한 하이브리드 분말 압출 공정을 통한 요구 특성의 스퍼기어 제조)

  • Lee, Kyung-Hun;Hwang, Dae-Won;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • In this study, a hybrid powder-extrusion process involving the control of temperature dwelling time for improving the formability of Zn-22Al powder was developed and the effect of dwelling time on the mechanical properties of a spur gear with a pitch circle having a diameter of 1.8 mm was investigated. General extrusion experiments were carried out at different temperatures such as 290, 300, and $310^{\circ}C$. Spur gears with good qualities and without any surface defects were obtained in the case of extrusion temperature of $310^{\circ}C$ and ball-milling duration of 32 h. The Vickers hardness distribution was non-uniform, and after the sintering process, an internal crack was generated because of the different deformation energy between gear central part and teeth. To overcome the abovementioned problems, research on controlling the dwelling time of the extrusion temperature in the powder-extrusion process was carried out. Good-quality spur gears were obtained when the dwelling time was 15 min.

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.