A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.
Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
Journal of Korea Multimedia Society
/
v.7
no.12
/
pp.1657-1664
/
2004
We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.
An extraction method of central objects in the color images is proposed, in this paper. A central object is defined as a comparatively consist of the central object in the image. First of all. an input image and its decreased resolution images are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent regions are included by a same region in the decreased resolution image. Then core object regions and core background regions are selected from the inner region and the outer region respectively. Core object regions are the representative regions for the object and are selected by using the information about the information about the region size and location. Each inner regions is classified into foreground or background regions by comparing values of a color histogram intersection of the inner region against the core object region and the core background regions. The core object region and foreground regions consist of the central object in the image.
Proceedings of the Computational Structural Engineering Institute Conference
/
2001.10a
/
pp.151-158
/
2001
This paper describes an example of developing an integrated design system, Integrated Structural Design System for Reinforced Concrete Buildings(INDECON). INDECON incorporates a central database and three design modules: a preliminary design module(PDM), a structural analysis module(SAM), and a detailed design module(DDM). The development of INDECON begins with the development of design models including Design Object Model(DOM) which describes design data during the structural design process. The Design Object Model is transformed to Design Table Model(DTM) for the central database, and is specified to be in detail for the three design modules. Then the central database is implemented and managed by relational database management system(RDBMS), and the three design modules are implemented using C++ programming language. The central database in the server computer communicates with the design modules in the client computers using TCP/IP internet protocol. The developing procedure for INDECON in this paper can be applied for developing more comprehensive integrated structural design systems.
Journal of Korea Society of Digital Industry and Information Management
/
v.15
no.3
/
pp.37-44
/
2019
In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.
Purpose: To assess the effects of object position in the field of view (FOV) and application of a metal artifact reduction (MAR) algorithm on the diagnostic accuracy of cone-beam computed tomography (CBCT) for the detection of vertical root fractures(VRFs). Materials and Methods: Sixty human single-canal premolars received root canal treatment. VRFs were induced in 30 endodontically treated teeth. The teeth were then divided into 4 groups, with 2 groups receiving metal posts and the remaining 2 only having an empty post space. The roots from different groups were mounted in a phantom made of cow rib bone, and CBCT scans were obtained for the 4 different groups. Three observers evaluated the images independently. Results: The highest frequency of correct diagnoses of VRFs was obtained with the object positioned centrally in the FOV, using the MAR algorithm. Peripheral positioning of the object without the MAR algorithm yielded the highest sensitivity for the first observer (66.7%). For the second and third observers, a central position improved sensitivity, with or without the MAR algorithm. In the presence of metal posts, central positioning of the object in the FOV significantly increased the diagnostic sensitivity and accuracy compared to peripheral positioning. Conclusion: Diagnostic accuracy was higher with central positioning than with peripheral positioning, irrespective of whether the MAR algorithm was applied. However, the effect of the MAR algorithm was more significant with central positioning than with peripheral positioning of the object in the FOV. The clinical experience and expertise of the observers may serve as a confounder in this respect.
Journal of the Korean Society for Precision Engineering
/
v.13
no.9
/
pp.104-113
/
1996
In robot system, the robot manipulation needs the information of task and objects to be handled in possessing a variaty of positions and orientations. In the current industrial robot system, determining position and orientation of objects under industrial environments is one of major problems. In order to pick up an object, the roblt needs the information about the position and orientation of object, and between objects and gripper. When sensing is accomplished by pinhole model camera, the mathematical relationship between object points and their images is expressed in terms of perspective, i.e., central projection. In this paper, a new approach to determine the information of the supporting points related to position and orientation of the object using the robot vision system is developed and testified in experimental setup. The result will be useful for the industrial, agricultural, and autonomous robot.
We present an application of digital video images for object tracking. In order to track a fixed object, which was shoot on a moving vehicle, this study develops a shape-based matching algorithm to implement the tracking task. Because the shape-based matching algorithm has scale and rotation invariant characteristics, therefore it can be used to calculate the similarity between two variant shapes. An experiment is performed to track the ship object in the open sea. The result shows that the proposed method can track the object in the video images even the shape change largely.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.566-571
/
2009
A calibration method for multiple sets of stereo vision cameras is proposed. To measure the three-dimensional shape of a very long object, measuring the object at different viewpoints and registration of the data are necessary. In this study, two lasers beams generate two strings of calibration targets, which form straight lines in the world coordinate system. An evaluation function is defined to calculate the sum of the squares of the distances between each transformed target and the fitted line representing the laser beam to each target, and the distances between points appearing in the data sets of two adjacent viewpoints. The calculation process for the approximation method based on data linearity is presented. The experimental results show the effectiveness of the method.
In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to measure the bubble size and volume in a two-phase boiling flow. The central-active contour model originally proposed by P. $Szczypi\'{n}ski$ and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour stability. The modified model is then applied to the algorithm to extract the object boundary. This improved central contour model could be applied to obscure objects using a variable threshold value. The extracted boundaries from each image are merged into a three-dimensional image through the developed algorithm. It is shown that the object reconstructed using the developed algorithm is very similar or identical to the real object. Various values such as volume and surface area are calculated for the reconstructed images and the developed algorithm is qualitatively verified using real images from rubber clay experiments and quantitatively verified by simulation using imaginary images. Finally, the developed algorithm is applied to measure the size and volume of vapor bubbles condensing in a subcooled boiling flow.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.