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ABSTRACT

A calibration method for multiple sets of stereo vision cam-
eras is proposed. To measure the three-dimensional shape
of a very long object, measuring the object at different view-
points and registration of the data are necessary. In this
study, two lasers beams generate two strings of calibration
targets, which form straight lines in the world coordinate
system. An evaluation function is defined to calculate the
sum of the squares of the distances between each trans-
formed target and the fitted line representing the laser beam
to each target, and the distances between points appearing
in the data sets of two adjacent viewpoints. The calcula-
tion process for the approximation method based on data
linearity is presented. The experimental results show the
effectiveness of the method.

1. INTRODUCTION

When measuring 3D objects or scenes that are too large to
be taken by a single shot of a stereo camera system, 3D data
measured by multiple sets of stereo camera systems should
be registered to obtain all the data. In registering 3D data
that are measured in different viewpoints, the calibration of
the extrinsic parameters of the stereo cameras has signif-
icant influence on the results. In this paper, the intrinsic
camera parameters are assumed to be previously calibrated.

The conventional method of calibrating the extrinsic cam-
era parameters at different viewpoints is to measure the fea-
ture points appearing commonly in some camera fields of
view (FOVs) and to calculate the transform matrix so that
the corresponding points are identical [1, 2, 3, 4, 5]. Such a
method may be less accurate when the common points are
unevenly dispersed in the FOV, because the 3D position of
a point far from the dispersed area is determined by extrap-
olation.

In measuring a long object, such as a ship or building,
with high accuracy, a series of viewpoints lined along the
object are needed to cover the whole measurement area.

In such an application, very small parts of adjacent FOVs
overlap, and the points in the overlapped FOV cannot be
observed by other cameras, which means points in the area

Fig. 1: Bending result in registration.

must be extrapolated. Figure 1 illustrates the harmful effect:
the registered object appears to be bent due to the calibration
patterns.

It is possible to prepare a calibration pattern of known
sizes and measure it, although this approach is impractical
when the object is very large. Not only is such a calibration
pattern difficult to handle, but also it is hard to ensure the
accuracy of the pattern itself, which changes according to
environment conditions such as temperature.

In this paper, we employ calibration patterns generated
with two laser diodes which are placed parallel to each other
and project beams toward the longitudinal direction of the
object. By measuring the 3D coordinates of the points il-
luminated by the lasers with stereo cameras, a sequence of
points on the two straight lines of the beams are obtained.
Then, the extrinsic parameters of the cameras are calculated
so that an estimation function which totals the distances be-
tween the points and the lines produces the minimum value.
We also present an effective approximation formula based
on the linearity of the laser data.
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Fig. 2: Laser sampling points{Pc,l,k}.

As the estimation function depends only on the linearity
of the laser beams, the parameters of the lines of the laser
beams are not needed. The lasers can be installed approxi-
mately parallel to each other. This method can overcome the
problems occurring when a large solid calibration pattern is
used.

In Section 2, the basic theory is described. In Section
3, the experimental result is shown for both actual data and
synthesized data. In Section 4, conclusions are given.

2. BASIC THEORY

2.1 Calibration data

First, all stereo camera systems are assumed to be previ-
ously calibrated so they can measure the 3D coordinates in
the local camera coordinate system.

By projecting two laser beams in the longitudinal direc-
tion of the measurement field, the stereo camera systems
can obtain two series of 3D point data. Let P̂c,l,k be the
3D coordinates of the points of the laser beams in the local
camera coordinate system and Pc,l,k be the world coordi-
nate, where c, l and k denote the indexes and Nc, Nl and
Np(c, l) are the numbers of the stereo cameras, lasers and
points, respectively. Figure 2 illustrates the alignments of
{Pc,l,k} in the measurement system.

Additionally, we introduce groups of feature points that
lie in the overlapped FOV of adjacent two views. Let
Q̂c,c+1,k be the feature points in the camera coordinate sys-
tem, and Qc,c+1,k be the points in the world coordinate sys-
tem, where c and k denote the indexes of the stereo cam-
era and the feature point, respectively. Although the feature
points do not have to be the projected laser spots, they must
be fixed when they are measured by the two stereo cameras.
Figure 3 illustrates the alignments of {Qc,c+1,k} in the mea-
surement system.

Fig. 3: Connection points {Qc,c+1,k}.

2.2 Evaluation function

Let S be the evaluation function of the whole system, which
is defined as follows,

S = w0S0 + w1S1 + w2S2, (1)

where S0 and S1 are the functions to evaluate the linearity
of laser spots {Pc,0,k} and {Pc,1,k}, respectively, S2 is the
function to evaluate the distance between adjacent views,
and wl is the weight for Sl (l=0..2).

2.3 Recurrence calculation

Let φ = {φα} be the vector of the unknown parameters,
which are the exact rotation and transformation parameters
of the camera coordinates. The number of all parameters
is (6 × (Nc − 1)). It is not (6 × Nc) because the set of
parameters for one of the stereo cameras does not change.

To obtain the calibration parameters {φ} that minimizes
the function S, the equation ∂S/∂φ = 0 is solved. This
equation is solved by the Newton-Raphson method, applied
in the following recurrence equation:
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(2)
where {δφα} is the shift vector for the parameters, and α
and β are the indexes of the parameters (1 ≤ α, β ≤ 6 ×
(N − 1)).

2.4 Evaluating the linearity

S0 and S1 are calculated as the sum of the squares of the dis-
tances between each point and the fitted line. The following
value can be substituted:

Sl = λ1 + λ2, (3)
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Fig. 4: Evaluating the distance from the fitted line.

where λ1 and λ2 are the second and the third largest eigen-
values of the covariance matrix of {Pc,l,k}. Because the two
eigenvalues are equivalent to the variance in the eigenvector,
the sum of them is equal to the sum of the squares of the dis-
tances from the center of gravity in v1 − v2 2D space (Fig.
4), where v1 and v2 are the eigenvectors corresponding to
λ1 and λ2.

Let A = (aij) be the covariance matrix of P . Then the
equation to solve the eigenvalues is the following:

λ3 + b1λ
2 + b2λ + b3 = 0, (4)

where

b1 = −(a00 + a11 + a22) (5)
b2 = (a00a11 + a11a22 + a22a00

−a12a21 − a02a20 − a01a10) (6)
b3 = − det(A). (7)

However, when the solutions of Eq.(4) are λk (k=0..2),
Eq.(4) can be expressed by the following.

(λ − λ0)(λ − λ1)(λ − λ2) = 0. (8)

By using Eq.(4) and Eq.(8), b1 through b3 can be substituted
with the eigenvalues also

b1 = −(λ0 + λ1 + λ2) (9)
b2 = λ0λ1 + λ1λ2 + λ2λ0 (10)
b3 = −λ0λ1λ2. (11)

Then, these equation can be approximated as follows:

b1 ' −λ0 (12)
b2 ' λ0(λ1 + λ2), (13)

when the condition λ0 � λ1 > λ2 is satisfied.
Thus, the next approximation is derived from Eq.(3):

Sl =
λ0(λ1 + λ2)

λ0

' −b2/b1. (14)

Equations (5), (6) and (14) derive a rational expression of
Sl with {aij}, which causes a rational expression with (xi),

which is the 3D coordinates of {P}. Finally, we can calcu-

late the values ∂2S
∂φα∂φβ

and ∂S
∂φα

that appear in Eq.(2).

S2 is calculated as follows:

S2 =
∑

(

(xk0 − xk′0)
2 + (xk1 − xk′1)

2

+(xk2 − xk′2)
2
)

, (15)

where vector t(xk0, xk1, xk2) is the Qc,c+1,k captured by
the stereo camera c and transformed to world coordinates,
and vector t(xk′0, xk′1, xk′2) is the Qc,c+1,k captured by the
stereo camera c + 1 and transformed to world coordinates.

2.5 Parameter initialization

To calculate the recursive equation Eq.(2), we need the ini-
tial values of the parameters. In this work, we apply the
following steps.

1. Fit a plane to the set of both laser data {P̂c,l,k} for each
camera c. Let ûc be the normal vector.

2. Fit a line to the set of laser data {P̂c,l,k} for each cam-
era c and laser l, and calculate v̂c, which is the average
of the two tangent vectors of the lines. Adjust v̂c to be
perpendicular to ûc.

3. Calculate ŵc = ûc×v̂c, so that ûcv̂cŵc forms a frame
Fc.

4. Calculate the rotation matrix Rc which projects frame
Fc to frame FC , where C is the specified camera whose
parameters are fixed.

5. Calculate the center of gravity (COG) ĝc,c+1,k and
ĝ′

c,c+1,k for the connection points Q̂c,c+1,k, where ĝ

is the COG at camera c and ĝ′

c,c+1,k is the COG at
camera c + 1.

6. Calculate the translation vector tc so that

Rcĝc,c+1,k + tc = Rc+1ĝ
′

c,c+1,k + tc+1 (16)

is satisfied for all c.

3. EXPERIMENT

We performed an experiment with actual calibration data
and synthesized data to prove the proposed method. In this
experiment, the weights w0, w1 and w2 are 1.0 and the iter-
ation stops when the following condition is satisfied:

Sold − Snew

Snew

< ε, (17)

where ε is 1.0× 10−6.
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Fig. 5: Calibration system.

Fig. 6: Data acquisition using a movable screen.

3.1 Actual data

Figure 5 illustrates the actual experimental system. Two
laser diodes are set on a fixed stand; a movable screen is
positioned to the right of the lasers and a stereo camera
is set on a rotating stage. Two cameras are mounted on a
stage vertically to configure the stereo camera system. In
this system, the rotating stage is employed to generate mul-
tiple viewpoints. The axis of the rotating stage is uncali-
brated. The intrinsic parameters of the stereo camera were
calibrated before the experiment.

The screen was moved along the laser beam, and the 3D
coordinates of two laser spots were measured with stereo
camera C (Fig.6). Those points were stored in {P̂c,l,k}.
When the screen came to the overlapped FOV of camera C
and C + 1, those data were stored in {Q̂c,c+1,k}. The num-
ber of {P̂}s must be greater than or equal to two for each
laser beam, and the number of {Q̂}s must be greater than
or equal to one. The average measurement error tends to
decrease with an increase in the number of {Q̂}s. The cali-
bration of the intrinsic parameters of the stereo camera and
the measurement of the 3D points were performed based on
Versatile Volumetric Vision (VVV) technology [6] devel-
oped at National Institute of Advanced Industrial Science
and Technology (AIST).

(a) initial data

(b) final data

Fig. 7: Calibration result of registration for actual data.

The 3D coordinates of the laser spots on the screen were
measured with the stereo cameras at 10 to 12 screen posi-
tions for each of six viewpoints.

Figure 7 illustrates the registered points of laser 0 and
laser 1. In this figure, (a) shows the data before calibration
and (b) shows the final result. Note that the scale of the Y
axis is different: (a) Y=[-150,200] (b) Y=[-1600:200].

3.2 Synthesized data

To confirm the robustness of this method against measure-
ment error, we generate synthesized data with given noises.

The data is assigned as follows.

1. Lasers are located parallel and the distance is 500
[mm].

2. The length of the laser segment in one FOV of a stereo
camera is 1000 [mm].

3. The number of points (P) in one segment is 100.

4. The number of points (Q) in one overlapped area is 4.

5. The overlapped length is 100 [mm].

6. The number of sets of stereo camera is 9.
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Fig. 8: Iteration result.

Table 1: Standard Deviation [mm] at convergence.

Noise Level Approximated Value Exact Value
0.0 8.51443× 10−4 9.00506× 10−4

0.1 0.231064079 0.231064077
0.2 0.462118253 0.462118258
0.5 1.15534162 1.15534173
1.0 2.31065027 2.31065116
2.0 4.62126000 4.62126708
5.0 11.5528605 11.5529710

10.0 NA NA

The error is given randomly, and the variance of the er-
ror is twice the value of Z of the camera coordinates. The
variance simulates the situation that the Z-error is large in
actual measurement. The simulated variances are 0.0, 0.1,
0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 [mm].

The iteration result is shown in Fig. 8. The X and Y axes
indicate the iteration time and the standard deviation of the
distance of the points from the fitted line, respectively. The
value is calculated as

√

S0 + S1
∑

c

∑

l Np(c, l)
. (18)

The figure shows that the proposed method works well
even for data with noise, except for data with noise 10.0
[mm], in which the convergence failed. This figure also re-
flects the trend that the iteration time increases as the noise
level increases. In this figure, the iteration result for the
actual data is also plotted with a thick line. The result sug-
gests that the noise level of the actual data is close to 0.1
[mm]. Figure 9 shows the registration result for the data
with noise=0. The results for other noise levels are similar.

Table 1 shows a comparison of the evaluated values of
the approximation in Eq.(14) and the exact calculation. The
approximated calculation closely matches the exact value,
even in measurement data with large noise. Therefore, the
proposed approximation works robustly.

(a) initial data

(b) final data

Fig. 9: Calibration result of registration for synthesized data
(noise=0.0).

4. CONCLUSION

In this paper, we proposed a method to calibrate a multi-
view stereo camera system with laser beams. Based on the
assured linearity of laser beams, this method may achieve
better results than calibration methods using unarranged
feature points, because it can avoid the problems caused
by extrapolation. The proposed method is advantageous
for measuring long objects because it can easily provide a
virtual large-scale calibration pattern. The approximation
method was proposed to decrease the complexity of calcu-
lation and the practicality was verified in the experiment.

The experimental result confirms that the method can
measure a large object with high accuracy. By simulating
the method with synthesized data of several noise levels,
robustness against measurement error is also confirmed.

In the experiment described in this paper, a moving
screen is used to obtain the points illuminated with the
lasers. Such a procedure requires considerable time and ef-
fort, so it is not practical. Adding a smoke machine to the
actual setup may help to obtain a large number of illumi-
nated points with less time and effort.

We are planning to specify the better set of the weights

570



wl used in Eq.(1) through additional experiments. We are
also planning to apply the method to actual objects to verify
its practical use.
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