• Title/Summary/Keyword: Center-pillar

Search Result 105, Processing Time 0.028 seconds

Center Pillar Design for High Bending Collapse Performance (굽힘 붕괴 성능 향상을 위한 센터 필라 설계)

  • Kang, Sungjong;Park, Myeongjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.128-134
    • /
    • 2013
  • High bending collapse performance (maximum resistance force and mean resistance force) of body center pillar is an important design target for vehicle safety against side impact. In this study, effect of the upper section shape and the thickness of outer reinforcement on bending collapse performance was investigated for the center pillar of a large passenger car. First, through bending collapse analyses using simple models with uniform section, an optimized center pillar upper section was chosen. Next, bending collapse performance for various models of the actual center pillar with changing the thickness of outer reinforcement were analyzed. The finally designed model showed distinctive enhancement in bending collapse performance nearly without weight increase.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Connection Structure Between Center Pillar and Roof Center Rail (거셋일체형 센터필러 어퍼 루프레일 연결구조 개발)

  • Lee, Hae Hoon;Chung, Pil Sang;Kang, Chong Ku
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.26-32
    • /
    • 2021
  • This study is intended to augment the Roof strength test being evaluated by IIHS (Insurance Institute for Highway Safety). In order to find solutions for increasing Roof Crashworthiness Evaluation SWR (Strengthto-weight ratio). This study introduces that Integrated Connection Structure Between Center Pillar and Roof Center Rail is proposed as a critical solution.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

A Study on Stamping of the Center Pillar (High-Strength Steel-780MPa) Using Finite Element Analysis (유한요소해석을 이용한 센터필러(고장력강-780MPa)의 스탬핑 공정 설계)

  • Bang, G.B.;Seong, H.S.;Kwak, H.S.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Center pillar, which is installed in the center of flank of car body, supports roof and door and ensures the safety of driver by reducing the damage of car body caused by impact. Recently, high-strength steel is widely used to manufacture the center pillar due to high stiffness and fuel efficiency. In this study, material properties of the high-strength steel, whose tensile strength is more than 780MPa, were obtained to produce the center pillar. Stamping was performed by considering the design parameters (blank holder force, press stroke, blank size and pad pressure) used in the actual filed. The drawbeads were included in the stamping process to reduce the amounts of wrinkling and spring back. Using the commercial software, Autoform R5.2 and Minitab, effects of design parameters of the stamping process upon spring back were analyzed and applied to the design process. The restriking process meets the target of under 0.5mm in the amount of spring back.

A Case Study of Six Sigma Project for Improving Productivity of the Brace Complement Center Pillar (Brace Complement Center Pillar의 생산성 향상을 위한 6시그마 프로젝트사례)

  • Lee, Min-Koo;Lee, Kwang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • This paper considers a six sigma project for improving productivity of the brace complement center pillar. The project follows a disciplined process of fife phases: define, measure, analyze, improve, and control. A process map is used to identify process input and output variables. Eleven key process input variables are selected by using X&Y matrix and FMEA, and finally eight vital few input variables are selected from analyze phase. The optimum process conditions of the vital few input variables are jointly obtained by maximizing productivity of the brace complement center pillar using DOE and alternative selection method.

Hardness Distribution and Dimensional Change after Partial- Hardened Hot Stamping of Automotive Body Part (국부 연화 핫스탬핑 차체 부품의 경도 분포 및 열 변형 거동)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.66-73
    • /
    • 2022
  • Partial-hardened hot stamping has been well known to be very effective to absorb more energy in automotive lateral crash. Hardness distribution and dimensional change after partial-hardened hot stamping have been studied to find out effect of thermal deformation of the heated hot stamping die on dimensional accuracy of automotive center pillar. Soft zone of commercial center pillar showed 275~345 in Vickers hardness, indicating bigger non-uniformity which resulted from thermal deformation of heated die. Dimensional changes in soft zone of the commercial center pillar measured by three dimensional scanner were much bigger than that in hard zone. It has been found that hot stamping die compensation considering thermal deformation in soft zone causes a significant decrease in hardness deviation in the soft zone, corresponding to 20 percent of commercial center pillar and subsequently leads to much higher dimensional accuracy.

Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump (Cu pillar 범프의 금속간화합물 성장과 계면접착에너지에 관한 연구)

  • Lim, Gi-Tae;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2008
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $150^{\circ}C,\;5{\times}10^4\;A/cm^2$ conditions, respectively, in order to compare the growth kinetics of intermetallic compound(IMC) in Cu pillar bump. The quantitative interfacial adhesion energy with annealing was measured by using four-point bending strength test in order to assess the effect of IMC growth on the mechanical reliability of Cu pillar bump. Only $Cu_6Sn_5$ was observed in the Cu pillar/Sn interface after reflow. However, $Cu_3Sn$ formed and grew at Cu pillar/$Cu_6Sn_5$ interface with increasing annealing and stressing time. The growth kinetics of total($Cu_6Sn_5+Cu_3Sn$) IMC changed when all Sn phases in Cu pillar bump were exhausted. The complete consumption time of Sn phase in electromigration condition was faster than that in annealing condition. The quantitative interfacial adhesion energy after 24h at $180^{\circ}C$ was $0.28J/m^2$ while it was $3.37J/m^2$ before annealing. Therefore, the growth of IMC seem to strongly affect the mechanical reliability of Cu pillar bump.

  • PDF