• Title/Summary/Keyword: Center of Buoyancy

Search Result 83, Processing Time 0.027 seconds

Buoyancy and Vertical Distribution of Mackerel Scomber japonicus Eggs in Korean Waters (한국 연근해 고등어(Scomber japonicus) 알의 비중과 수직분포)

  • Jung, Kyung-Mi;Kang, Sukyung;Cha, Hyung Kee;Choi, Kwang Ho;Myksvoll, Mari S.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.957-965
    • /
    • 2013
  • This study simulated the egg vertical distribution of mackerel Scomber japonicus in Korean waters using general numerical models. All eggs were spawned naturally by raising broodfishes (May-June 2013), and the egg specific gravity was measured by a density-gradient column. CTD surveys provided environmental data (e.g., temperature and salinity) in May near Jeju Island, Korea. The egg specific gravity during the early stages ranged from 1.0203-1.0211. In general, the fertilized eggs showed a gradual decline in egg specific gravity until full development of the main organs, with a sudden increase just before hatching. Modeled egg vertical distributions were influenced more by wind speed than by egg buoyancy and vertical structure of the sea water. During calm and normal wind speeds, the eggs were distributed from the surface to 25-m depths. Under strong wind conditions (three times higher than the normal speed), the egg concentration on the surface decreased, and the egg distributional depth was deeper (~50 m).

Eco-Moving Wall for a Preventing Floods using Glass Fiber Reinforced Composite (유리섬유복합소재를 이용한 지중매설형 승하강식 홍수방지 벽체구조물)

  • Yun, Youngman
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.462-468
    • /
    • 2013
  • Walls for preventing floods using overturning or buoyancy method have been developed as replacement construction for preventing floods in and outside country. However, as they have some problems with pre-inspection and maintenance control, Eco-moving wall structure for preventing floods was studied and first developed using Glass Fiber Reinforced Composite which has not only light weight but outstanding strength. The developed wall structure for preventing floods offering structural stability and field applicability through numerical analysis was confirmed to reduce construction expenses by around 87~95% and secure waterproof property with the inside of the wall installed rubber water stopper.

전파 Jet 3C449의 동역학적 모형

  • Jeong, Hong-Dae;Yun, Hong-Sik;Choe, Seung-Eon
    • Publications of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • A jet plasmoid model for 3C.449 has been constructed by introducing a plasma.ejecting black hole orbiting around the center of its parent cD galaxy. We examined the characteristics of the jet trajectory by varying the values of (1) orbiting radius and velocity of the black hole, (2) plasma ejection velocity, (3) size, mass and space velocity of the parent galaxy, (4) size of the galactic core and (5) the density of the intergalactic medium. In our model calculation the effect of the gravity by the parent galaxy and the ram pressure by the intergalactic medium have been taken in account. It is found that our dynamical model accounts reasonably well for the observed structure of 3C449. Our proposed model suggests that the buoyancy force near the galactic center plays an important role in the formation of the curved structure of the radio jet.

  • PDF

Nonlinear Motion for an Elliptic Cylinder under Free Surface (자유표면 아래의 타원형 실린더에 대한 비선형 운동)

  • 이호영;임춘규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • The motion response analysis of a submerged elliptic cylinder in waves is presented and the elliptic cylinder is a simplification of the section of submarine in this paper. The method is based on boundary integral method and two-dimensional 3 degree motions are calculated in regular harmonic waves. The fully nonlinear free surface boundary condition is assumed in an numerical domain and this solution is matched along an assumed boundary as a linear solution composed of transient Green function, The large amplitude motions of an elliptic cylinder are directly simulated and effects of wave frequency, wave amplitude and the distance from buoyancy center to gravity center are discussed.

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

수중주거시설 동적계류안정성 설계 연구

  • Park, Sang-Uk;Lee, Han-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.130-133
    • /
    • 2019
  • 수중(submerged)에 부유(floating)식으로 계류되는 거주목적의 구조체 설계(design basis) 관련 연구로서 계류안정성 모델(수중가옥)을 만들고 거동을 정수압적 유체역학적으로 수치분석한다. 임의 가정한 수중가옥의 1)배수량 규모 2) 함체형상에 따른 환경압 하에서의 계류안정성을 a)부력중심, b)무게중심과 가변하중의 변위에 따른 c)함체 기울기를 MATLAB프로그램을 이용하여 산정한다. 나아가 수중가옥의 동적(hydrodynamic) 계류안정성을 임의 시공 장소인 독도의 기상청 울릉도-독도 부이 최근 관측치를 근거로 OrcaFlex프로그램을 이용하여 분석하므로써 수중가옥의 수중건축 시공간상 계류안정성 설계요건(design basis)을 구체화 한다.

  • PDF

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

Characteristics of the plume formed by the buoyant discharges from the river

  • Kim, Ki-Cheol;Kim, Sung-Bo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.981-994
    • /
    • 2014
  • Density currents formed by buoyancy discharges from rivers are numerically studied using non-dimensional two layer model including Coriolis acceleration, bottom stress, interfacial friction. Some typical numbers such as Froude number, densimetric Froude number and Kelvin number are obtained and some characteristic scales are defined as a result of non-dimensionalization of the governing equations. Besides the Coriolis effect, the configurations of bottom topography, bottom friction coefficient and interfacial friction are found to significantly affect the propagation of the warm water plume. Frontal position can fastly propagate in the case of large density difference between the two layers and small interfacial friction. Left side boundary current is easily formed under the small interfacial friction. With large Kelvin number, both right and left side boundary currents are formed. Wave-like disturbances and eddies are easily formed under the high Froude number.