• Title/Summary/Keyword: Center Hinge

Search Result 61, Processing Time 0.051 seconds

Robust Rear Center-Hinge Bracket Optimization Based on Taguchi Method (다구찌 방법을 활용한 Rear Center-Hinge Bracket 강건 설계)

  • Jung, Sebin;Kim, Minho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.203-209
    • /
    • 2014
  • The rear center-hinge bracket is designed for supporting and folding the rear-seat backrest. This bracket needs to be strong enough to be able to rigidly hold the rear-seat backrest and to withstand luggage loads from the car trunk that are generated when a vehicle is driving on the roads. Particularly, current accident studies report that many serious occupant injuries occurred when the rear-seat back easily folded inward toward the car interior, driven by the luggage loads in the trunk. Given this fact, the robust design of the rear center-hinge bracket that mainly supports the rear backrest has become more important for providing customer safety and preventing high warranty and durability problems. However, none of the studies have emphasized its significant role and considered its robust optimization. Therefore, this paper presents how the hinge-bracket design is optimized based on an application of the finite-element method coupled with the parameter design using Taguchi's design experiment. Finally, Taguchi method's application optimizes a robust center-hinge bracket that shows more rigid performance although it has lighter weight and thinner thickness.

Development of Mandibular Movements Measuring System Using Double Stereo-Cameras

  • Park, Soon-Yong;Park, Sung-Kee;Cho, Chang-Hyun;Kim, Mun-Sang;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1183-1188
    • /
    • 2005
  • In this paper, we propose a 3D automated measuring system which measures the mandibular movements and the reference plane of the jaw movements. In diagnosis and treatment of the malocclusions, it is necessary to estimate the mandibular movements and the reference plane of the jaw movements. The proposed system is configured with double stereo-cameras, PC, two moving pattern plates(MPPs), two fixed pattern plates(FPPs) and one orbital marker. The virtual pattern plate is applied to calculate the homogeneous transformation matrices which describe the coordinates systems of the FPP and MPP with respect to the world coordinates system. To estimate the parameters of the hinge axis, the Euler's theorem is applied. The hinge axis points are intersections between the FPPs and the hinge axis. The coordinates of a hinge axis point with respect to the MPP coordinates system are set up to fixed value. And then, the paths of the jaw movement can be calculated by applying the homogeneous transformation matrix to fixed hinge axis point. To examine the accuracy of the measurements, experiments of measuring the hinge axis points and floating paths of them are performed using the jaw motion simulator. As results, the measurement errors of the hinge axis points are within reasonable boundary, and the floating paths are very similar to the simulator's moving path.

  • PDF

Reliability Evaluation for Hinge of Folder Devices Using ESPI

  • Kyungyoung Jhang;Minkwan Hyun;Lee, Taehun;Seokwon Chang
    • International Journal of Reliability and Applications
    • /
    • v.5 no.1
    • /
    • pp.15-24
    • /
    • 2004
  • Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crank-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  • PDF

A Study of the Hinge Axis Point (Hinge Axis Point에 관한 연구)

  • Jung, Kum-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.72-78
    • /
    • 1984
  • The notion that the axis of the shaft of the articulator must coincide the patient's mandibular transverse axis tells us the importance of locating the axis precisely. When using kinematic axis to transfer a cast to an articulator, the anatomic asymmetry of the contralateral points will result in certain distortion when the axis transferred to an articulator where the mechanical axis produces symmetry. In this study, after locating the true hinge axis point with Denar hinge axis locator, the discrepancies between true hinge axis point and arbitrary hinge axis point that was 13mm anterior from the posterior margin of center of trangus to the outer canthus of eye were measured. And the discrepancies between left and right true hinge axis point in the superoinferior and anteroposterior directions were measured. For this study, 20 dental students who have no missing teeth and no difficulties of mandibular movement were selected. Upper and lower cast of subjects were mounted on Denar Mark II articulator uisng Denar Slidematic face-bow and centric relation record for the measurement of discrepancies between left and right true hinge axis points. The results obtained as follows. 1. The mean distance from the arbitrary hinge axis point to the true hinge axis point was as follows. Right: horizontal distance; 1.99mm, vertical distance; 2.12mm, linear distance; 3.36 mm. Left: horizontal distance; 1.39mm, vertical distance; 2.06mm, linear distance; 2.09mm. Total: horizontal distance; 1.69mm, vertical distance; 2.09mm linear distance; 3.06 mm. 2. The 87.5% of true hinge axis points were within 5mm of the arbitrary hinge axis point. 3. The mean discrepancies between the right and left hinge axis point were 2.92mm in superoinferior direction and 4.74mm in anteroposterior direction. 4. When transferring the axis to the articulator, anatomic asymmetry between right: and left axis point produces in dislocation of cast on the articulator, and undesirable shift in esthetic tooth position will be resulted.

  • PDF

Blank Design of SPFH 590 Steel Sheet for Stamping of Center Hinge of Automotive via Analysis of Transfer Forming Process with Multi-Stages (다단 이송 성형 공정 해석을 통한 자동차 센터 힌지 성형용 SPFH 590 고강도 강판 블랭크 설계)

  • Ahn, Dong-Gyu;Song, Dong-Han;Sohn, Sang-Sik;Han, Gil-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.75-84
    • /
    • 2010
  • The aim of this paper is to design the blank shape of SPFH 590 high strength steel for stamping of the center hinge of automotive via numerical analyses and experiments for multi-stages transfer forming process. Three-dimensional elasto-plastic finite element analyses for the transfer forming process with six stages were performed using a commercial code AUTOFORM V4.2. The influence of the blank shape on the formability and the shape conformity were quantitatively examined through the FE analyses. From the results of the FE analysis, a feasible shape of the blank and the forming load were estimated. Stamping experiments were carried out using the proposed blank shape. The results of experiments were shown that the center hinge parts with the desired shapes can be manufactured successfully as the proposed blank shape is used. Through the comparison of the results of the experiments with those of the analyses, it was shown that the estimation of blank shape using the FE analysis is a proper methodology to create a feasible shape of the blank for the center hinge of automotive.

Finite Element Analysis of Dynamic Deformation of Refrigerator's Lower Hinge during Drop Test (냉장고 낙하시 하힌지 동적변형 해석)

  • Hong, Seokmoo;Choi, Yong Chan;Eom, Seong-Uk;Kim, Hong Lae;Hyun, Hong Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper dynamic deformation of lower hinge of refrigerator is simulated using dynamic finite element analysis while refrigerator is being dropped. The flow stress curves considering velocity dependency of hinge and lower packing material are determined through bending test and compression test at several dropping speeds. The determined material properties and flow stress from reverse engineering were used as input data for refrigerator's drop test using a dynamic finite element analysis software LS-DYNA. Additionally the result between CAE and 3D deformation measurement from real refrigerator drop test are compared and the result shows that the proposed analysis model is very useful to design lower hinge and lower packing endurable to the impulsive drop impact.

A novel miniature condenser microphone with a hinge diaphragm (힌지구조를 갖는 초소형 콘덴서 마이크로폰)

  • Kim, Hye-Jin;Lee, Sung-Q;Park, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.174-178
    • /
    • 2007
  • This paper presents a novel, highly sensitive condenser microphone with a flexure hinge diaphragm. We used the finite-element analysis (FEA) to evaluate the mechanical and acoustic performance of the condenser microphone with a hinge diaphragm. And we fabricated the miniature condenser microphones with area of 1.5 mm${\times}$1.5 mm. From the simulation results, we confirmed that the maximum displacements at the center of flexure hinge diaphragms are several hundred times, compared with flat diaphragms. The sensitivities of fabricated miniature microphones are about $12.87{\mu}V/Pa$ at 1 kHz under a low bias voltage of 1 V, and the frequency response is flat upto 13 kHz.

A Study on Accuracy in Determining the Hinge Axis Location (접번축(蝶番軸) 위치(位置) 결정시(決定時)의 정밀성(精密性)에 대(對)한 연구(硏究))

  • Kim, Choon-Ho;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 1986
  • The purpose of this study was to investigate true hinge axis location with different times (8:00-9:00 A.M.,2:00-3:00 P.M.) and with experienced and inexperienced groups. 25 subjects, 23-27 years of age , with functionally acceptable occlusion, and no clinical signs of temporomandibular joint dysfunction were participated in this study. In this study arbitrary hinge axis point was located 13 mm anterior to the posterior margin of the tragus on a line from the center of the tragus to the outer canthus of the eye and then the true hinge axis point was located with T.M.J. hinge axis locator. The discrepancies of distance and the direction between true hinge axis point and arbitrary hinge axis point were studied according to times and two groups. The results obtained were as follows : 1. The mean distance from arbitrary hinge axis point to the true hinge axis point on the right and left sides was as follows : Experienced group: linear distance: $1.228{\pm}3.145mm$, vertical distance: $-1.128{\pm}2.515mm$, horizontal distance: $-0.484{\pm}1.806mm$. Inexperience group: linear distance: $1.628{\pm}3.158mm$, vertical distance: $-1.169{\pm}2.090mm$, horizontal distance: $-1.133{\pm}2.367mm$. Horizontal distance between experienced and inexperienced groups was significant statistically. (P<0.1) 2. True hinge axis points located within 5 mm of arbitrary hinge axis point were 86.7% in the experienced group and 84% in the inexperienced group. 3. For experienced operator A with time, the mean distance from arbitrary hinge axis point to true hinge axis point was as follows: Horizontal distance: AM: $-0.613{\pm}1.966mm$, PM: $-0.860{\pm}2.156mm$. Vertical distance: AM: $-0.886{\pm}2.518mm$, PM : $-1.226{\pm}2.660mm$. True hinge axis points had tendency to be located posterior-inferiorly to tragus-canthus line in the afternoon than in the morning, but there was not significant statistically. (P>0.1)

  • PDF

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.