• 제목/요약/키워드: Center Floor Side Member

검색결과 2건 처리시간 0.016초

980MPa급 초고강도강판을 이용한 센터 플로 사이드 멤버의 성형공정 연구 (A Study on the forming Process of Automobile Center floor Side Member using Ultra High Strength Steel of 980MPa)

  • 임희택;서창희;윤국태;노현철;신효동;곽영식;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2009
  • Ultra high strength steels(UHSS) are widely used to fill the needs of lightweight part for automobile, and the control of springback is very important (actor in sheet metal forming using UHSS. In this study, to lighten the center floor side member(CFSM) which is normally manufactured using $600{\sim}800MPa$ steel sheet, new design of the manufacturing process for CFSM using APFC980 has been proposed. To accomplish this goal, the influence of process variables such as die corner radius and die wall angle on the springback were investigated using FE-analysis. In order to insure the validity of FE-analysis, the springback results of FE-analysis was verified with prototype product.

  • PDF

고주파유도가열에 의한 고강도 센터필라 개발 (Development of High Strength Center-pillar by High Frequency Induction Heating)

  • 손진혁;염영진;김원혁;황정복;김선웅;유승조;이현우
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.533-539
    • /
    • 2008
  • An high frequency induction hardening technology of vehicle body press-formed of thin sheet steel has been developed to increase the strength of vehicle body parts locally by high frequency induction heating, thereby eliminating the need for reinforcements. And this technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement of a passenger car. The side impact behavior has been investigated when induction hardening technology is applied to the conventional low-carbon steel and weight reduction of an automotive body is expected. In this paper, basic experiments were performed for the hat-shaped specimen under high frequency induction heating process. Martensitic transformation was found in the heating zone through microscopic observation which showed higher hardness. In addition, the hardness and strength of the center-pillar specimen made of boron steel increased remarkably by high frequency induction heating.