• Title/Summary/Keyword: Cementitious composites

Search Result 257, Processing Time 0.035 seconds

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Strength and CO2 Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials (자원순환형 재료를 사용한 섬유보강 시멘트 복합체(FRCCs)의 강도 및 CO2 저감에 관한 연구)

  • Lee, Jong-Won;Kim, Sun-Woo;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • The objective of this study is to develop sustainable PVA fiber-reinforced cementitious composites (FRCCs) that could exhibit comparable strength level to normal PVA FRCCs with no recycled materials. To evaluate mechanical properties of the FRCCs, compressive, flexural and direct tensile tests were conducted. In addition to the test, to calculate amount of carbon dioxide ($CO_2$) emission at the stage of manufacturing the FRCCs, life cycle inventory data base (LCI DB) were referenced from domestic and Japan. From the test results, the mechanical properties such as compressive, flexural and direct tensile strengths were decreased as the replacement ratio of recycled materials increased. And it was determined that the amount of $CO_2$ emission was reduced for the specimens with higher water-binder ratio (W/B) and replacement ratios. It was also found that binder intensity ($B_i$) value was higher as replacement ratio of fly ash (FA) increased. This result means that larger amount of FA is need to deliver one unit of a given performance indicator (1 MPa of strength) of FRCCs compared to that of ordinary portland cement (OPC). As a result, it could be concluded that FRCCs with W/B 45% replaced by FA 25% and recycled sand (RS) 25% is desirable for both target performance and $CO_2$ emission.

Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers (비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향)

  • Kim, Dong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.575-583
    • /
    • 2010
  • This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.

Evaluation of Fiber Dispersion of ECC Incorporated by Recycled Mineral Wastes (순환형 폐기물이 혼입된 ECC의 섬유 분산성 평가)

  • Kim, Yun-Yong;Park, Jun-Hyung;Hyun, Jung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.381-382
    • /
    • 2010
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. Thus, fiber dispersion of ECC incorporated by recycled mineral wastes was evaluated to more accurately predict uniaxial tension behavior.

  • PDF

Affecting Analysis of Air Content on the Tensile Properties of Strain-Hardening Cementitious Composite (고인성 복합재료의 인장특성에 공기량이 미치는 영향 분석)

  • Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.439-440
    • /
    • 2010
  • The Air content has a great effect on the Tensile Strain of Strain-Hardening Cement Composites. We analyze the Tensile Properties of SHCC with variations of air content from the laboratory test.

  • PDF

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

The Experimental Study of Behaviors in Prestressed Concrete Beam made of Ultra High Performance Cementitiou Composites without Stirrups (초고성능 섬유보강 시멘트 복합체로 제작된 전단보강이 없는 PSC 보의 거동에 대한 실험적 연구)

  • Kang Su Tae;Park Jung Jun;Ryu Gum Sung;Koh Kyung Taek;Kim Sung Wook;Han Sang Muk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.403-406
    • /
    • 2005
  • Ultra high performance cementitious composites(UHPCC), which is composed of micro-sized ultra fine particles, is characterized by high strength, high ductility and excellent durability. so if we make prestressed concrete bridge girder using UHPCC, we can obtain the safety and economical efficiency in bridge girder construction. In this study, we performed the experiments to evaluate the load capacity, failure process and mode of prestressed concrete without stirrups using UHPCC.

  • PDF

Innovative impact apparatus for fiber reinforced cement composites (섬유보강 시멘트 복합재료용 충격 시험장치)

  • Kim, Dong-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.403-404
    • /
    • 2010
  • This paper introduces new impact apparatus using elastic strain energy for Fiber Reinforced Cementitious Composites [HPFRCC] which requires larger size of specimen and higher impact load and energy to fail the specimens. New impact apparatus utilize elastic strain energy to generate high rate impact stress wave and it is much smaller, cheaper and safer than current other impact devices.

  • PDF

Influence of Specimen Shapes on Tensile Behaviors of High Performance Fiber Reinforced Cement Composites (시험체 형상이 고인성시멘트복합체 인장거동에 미치는 영향)

  • Yang Il-Seung;Yun Hyun-Do;Han Byung-Chan;Shin Hong-Chul;Park Wan-Shin;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.65-68
    • /
    • 2005
  • Social requirements to the civil and building structures have been changed in accordance with the social and economic progress. It is very important to develop the innovative structural materials and tecnology that the social requirements appropriately. Ductility of High Performance Fiber Reinforced cementitious Composites (HPFRCC), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress are drastically improved. Because ductility in tensile test are very different according to specimen shapes, three types of the direct tensile test are performed. The tensile test are performed using the tensile test specimen, dummbell-shaped specimen, and cylinder specimen. As a result, tensile performance in HPFRCC is very good comparing to cylinder specimen because of direction characteristics of fibers. It is necessary to clarify the examination method of suiting to the usage.

  • PDF

The Structural Behavior of Seismic Devices using High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체를 사용한 내진요소의 구조성능)

  • Yang Il-Seung;Yun Hyun-Do;Han Byung-Chang;Park Wan-Shin;Kim Sun-Woo;Moon Yeon-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.21-24
    • /
    • 2004
  • Structural performance of the seismic devices made by steel bar and high performance fiber reinforced cement composites(HPFRCCs) was experimentally observed. These dampers will be applied for reducing damage as well as seismic response. The advantages of the HPFRCCs damper is selective structural performance, strength, stiffness, and ductility by changing configuration, bar arrangements and type of materials used. The experimental results indicate that elemental ductility is much increased with decreasing damage when the HPFRCCs are applied to the damper. It means cementitious damper for structural control is available which has much merit in performance and cost.

  • PDF