• Title/Summary/Keyword: Cement-Mixed Soil

Search Result 117, Processing Time 0.022 seconds

A Study on the Application of Landfill Liners with Stone Dust Sludge (석분슬러지를 이용한 쓰레기매립장 차수재의 적용성에 관한 연구)

  • Cho, Jae-Hyung;Yoon, Tae-Gook;Yeo, Byeong-Chul;Ahn, Sang-Ro;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.483-490
    • /
    • 2005
  • At present around 50 companies have their own crushing plants, which manufacture rock into crushed sand, over around 350 different quarry throughout the nation. However, in most plants the stone dust sludge is left as it is in their plants so that they have difficulty to utilize. Furthermore, environmental pollution may be even caused due to dust generated when it is dried. Recycling is starting capturing the attention of the people working over the quarry due to the reasons described above. This research has studied in the quarters the usability as landfill liner of the stone dust sludge, which is industrial waste. We investigated what technological properties it would have after mixing the stone dust sludge with SM(sandy soil) first and then with blast furnace slag or reject ash, which is waste, and cement as the stabilizer. As the result of three tests; compacting test, strength test, and permeability test; to satisfy the regulatory guideline of the government that is the compress strength over 5 $kgf/cm^2$, the flexibility over 1 $kgf/cm^2$, and the permeability under $1.0{\times}10^{-7}cm/sec$ From this research, we could confirm that stone dust sludge would be used as waste landfill liner if it were mixed with other waste by the proper mixing ratio.

  • PDF

Effects of Capillary Force on Salt Cementation Phenomenon (소금의 고결화 현상에서 모세관 효과)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • Salt cementation, a typical naturally-cemented phenomenon, may occur due to water evaporation under the change of climate. Capillary force may influence the distribution of cement in granular soils. This study addresses the effect of capillary force on salt cementation using five different techniques: cone penetration test, electrical conductivity measurement, photographic imaging technique, nondestructive imaging technique, and process monitoring by elastic wave. Glass beads modeling a particulate media was mixed with salt water and then dried in an oven to create the cementation condition. Experimental results show that salt cementation highly concentrates at the top of the small particle size specimens and at the middle or the bottom of the large particle specimens. The predicted capillary heights are similar to the locations of high salt concentration in the cemented specimens. Five suggested methods show that the behavior of salt-cemented granular media heavily depends on the capillary force.

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.

Characteristics of sound absorption materials by using ecological aggregates (에코골재를 사용한 흡음재의 특성)

  • Kim, Kang-Duk;Ryu, Yu-Gwang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.264-270
    • /
    • 2008
  • Ecological lightweight aggregates were made by using the wastes come from various industrial fields. Wastes were crushed and pulverized by mills and a certain portions of wastes were mixed and formed by pelletizer like small beads. The formed lightweight aggregates were finally sintered with $1125^{\circ}C$/15 min conditions by using rotary kiln. Lightweight concrete sound absorbers were made of ecological lightweight aggregates K73 (Coal bottom ash 70 wt%: Dredged soil 30 wt%) and K631 (Clay 60 wt%: Stone sludge 30 wt%: Spent bleaching clay 10 wt%). For the reference, lightweight concrete sound absorbers made of DL (German made 'L' company LWA) were also made under the same conditions. Sound absorption characteristics were observed and measured according to the kinds of aggregates, water/cement ratio (W/C=20, 25, and 30%), and designed pore rates (V=20, 25, and 30%). The pore rates of the lightweight concrete sound absorber were turned out to be 5 to 10% higher than designed ones. Absorption coefficient of the lightweight concrete sound absorber by using K631 aggregates with W/C=20% and V=25% conditions was 0.88 at 1000 and 3150 Hz from the measurement by the impedance tube.

A Study on the Engineering Characteristics of Soil - Fly Ash - Bentonite Liner (플라이애시-벤토나이트 혼합 점토차수재의 공학적 특성에 관한 연구)

  • Lee, Changhwan;Kim, Myeongkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • As household and industrial wastes continue to rapidly increase every year, the demands for landfill sites are also increasing. However, the construction of landfill sites causes many problems due to the high costs of liners, while the leachate from the landfills generates secondary contamination of surrounding lands and groundwater. The purpose of this study is to determine the proper mixing ratio to meet the liner conditions (must be less than $1{\times}10^{-7}cm/sec$), using the local soil as the main material and using fly ash, bentonite, and cement as the mixing materials. The possibility of using this mixture as the liner for landfill sites was examined. To determine the proper mixing ratio, this study conducted basic physical properties tests, compaction tests, consolidation tests, and uniaxial compression tests. It was found that the higher the ratio of bentonite, the lower the coefficient of permeability, and the higher the ratio of fly ash, the higher the coefficient of permeability. The reason for this is that, while bentonite expands and fills pores, fly ash cannot fill the pores because the particles have a round shape and do not have adhesion. In conclusion, the optimum coefficient of permeability that meets the landfill liner condition was obtained when the ratio of bentonite was 15% or higher. If fly ash was mixed, the landfill liner condition was met when the ratio of bentonite was 15% or higher and the ratio of fly ash was 20% or lower.

  • PDF

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Changing Aspects of the Wall Types of Hahoe Village (하회마을 담장 형태의 변화양상)

  • Kim, Dong-Hyun;Lee, Won-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.87-96
    • /
    • 2017
  • This study focuses on the Andong Hahoe Village and seeks to identify the shape of the walls since the 1970s. The change of walls can be divided into four periods based on characteristics of materials, shape and distribution. The following is a summary of the results: First, In the 1970s, when Andong Hahoe Village was not designated as a cultural heritage, roof tiles hung on the earthen walls in the middle of the village were major forms. On the outside of the village, rice straw and pine needles were put on the earthen walls or bush clover walls were put in place around if walls were not built. Second, after being designated as a cultural heritage in the 1980s, readjustments for cultural heritages were carried out at the primary stage. However, the distribution of cultural heritages and major changes were not determined at this time since readjustments were mainly focused on the renovation of derelict houses or maintenance of infrastructures. Third, in the past the use of stone bricks for the Hahoe Village site had been difficult, but in the 1990s, replacements with soil-stone walls were identified and the usage of roof tiles increased. The portion of earthen walls, which used to be the major form in the prior era, decreased and this seems to have continued until the 2000s. Fourth, via a field survey, it was found that most of Hahoe village walls consisted of soil cement bricks mixed with cement, steel, lime, gravel. etc. Also, the scope of straw-stricken walls and bush clover walls were reduced to a section of area outside of the village. Fifth, from the 1970s to the present, there were changes to the walls in Hahoe Village including an increase in usages of new materials and an expansion of houses with tiled roofs on top in accordance with the replacement of walls of existing houses. Relevant reasons for this have been identified, such as the fading value of Fungsui(風水) and lack of original records, insufficient awareness and expertise in non-building areas, and the relationship between residents on repairing the wall.