• 제목/요약/키워드: Cement properties

검색결과 2,859건 처리시간 0.033초

저발열시멘트 콘크리트의 기초적 성질에 대한 연구 (A Study on the Properties of Low-Heat Cement Concrete)

  • 문한영;김성수;신화철;강석화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.57-60
    • /
    • 1997
  • The properties of Low-heat cement are especially in lower heat of hydration than that of other types of cement. In other respect, Low-heat concrete is more advantageous than OPC concrete in chemical resistance, long term age compressive strength, slump loss and resistance to seawater. This paper deals with 28 days age compressive strength and slump loss by elapsed time of mortar and concrete that made with Low-heat cement and 3 types of other cement.

  • PDF

저발열 시멘트 및 콘크리트의 특성 (Properties of Low-heat Cement and Concrete)

  • 노재호;박연동;송용순;김훈;강석화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.345-351
    • /
    • 1996
  • The study on the properties of low-heat cement that hear of hydration is relatively lower than that of ordinary portland cement and concrete made of this low-hear cement has been performed to test the hear of hydration and compressive strength, chemical resistance of concrete using low-hear cement to compare with concrete using other several typers of cements.

  • PDF

킬른더스트를 사용한 콘크리트의 공학적 특성에 관한 연구 (A Study on the Engineering Properties of Concrete Using Cement Kiln Dust)

  • 김기정;황인성;차천수;김성수;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.267-270
    • /
    • 2003
  • This study is intended to investigate the engineering properties of concrete, in which cement and fine aggregate are replaced with cement kiln dust(CKD), such as the properties of fresh concrete and hardened concrete and hydration heat history, for effective using method of CKD, a by-product produced in the process of making cement. According to the results, as the replacing ratio of CKD increases, slump and air content of concrete decreases remarkably due to an increase of viscosity and filling of the pores. As the properties of setting, initial and final setting time are shortened with an increase of the replacing ratio of CKD, and as the replacement of CKD for fine aggregate increases, setting time is shortened more greatly. Compressive strength increases due to filling of the pores and reduction of air content in comparison with plain concrete. When the replacement ratio of CKD for cement is 10% and 15%, peak temperature of hydration heat lowers slightly, but it goes up in the case of replacement of CKD for fine aggregate. Also, when cement and fine aggregate is replaced with CKD by 2.5% and 7.5% respectively(1C3S) in the case of replacement of CKD for cement and fine aggregate, it is highest.

  • PDF

라텍스개질 콘크리트의 물-시멘트비에 따른 건조수축 특성 (Drying Shrinkage Properties of Latex Modified Concrete with Water-Cement Ratios)

  • 정원경;김성환;김동호;이주형;이봉학
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.193-200
    • /
    • 2002
  • Drying shrinkage cracking which may be caused by the relatively large specific surface IS a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), water-cement ratios and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower with low water-cement ratio, respectively This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

  • PDF

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

폴리머 시멘트 슬러리 도장철근의 인발부착 특성 (Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars)

  • 김현기;김민호;장성주;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성 (Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method.)

  • 최응규
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

배기가스 제거용 광촉매시멘트의 특성에 관한 연구 (A Study on the Properties of Photocatalytic Cement for Waste Gas Reduction)

  • 이원암;양진;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.425-430
    • /
    • 2002
  • The needs of the times, a cement plays an important roll in the materials field. So, in this research we would like to study on the properties of Photocatalytic Cement for waste gas reduction. The fundamental phenomena of the Photocatalytic Cement were observed by the NOx Analyzer, Bonding strength, SEM, Flow and Surface hardness(Pencil tester). As a result of this study, the Photocatalytic Cement used Photocatalytic powder, admixture and other materials can obtain its physical properties, also photocatalytic efficiency. If we have added a various experiment, we could have to develop the Photocatalytic Cement.

  • PDF

시멘트 혼합재 첨가에 따른 콘크리트 내구 특성 (A Study on the Durability of Concrete made with Various Cements Containing Additive)

  • 김창범;조계흥;최재웅;김동석;박춘근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.687-692
    • /
    • 1998
  • This paper covers concrete durability made with portland cement type I and V, and granulated blast furnace slag blended cements 40 and 60%. Typical properties of cements and compressive strength development, drying shrinkage, carbonation, freezing and thawing properties of concretes were investigated. In addition, effects of CI penetration on various concretes with/without a freezing and thawing treatment were also studied. Portland cement type I and V were superior to the blended cement in the properties of compressive strength development, drying shrinkage, carbonation and freezing and thawing durability. In the respect of resistant of CI Blended cement showed better than the portland cement due to high permeability. But the blended cement with a freezing and thawing treatment presented a much decreased resistance of CI penetration.

  • PDF

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.