• Title/Summary/Keyword: Cement paste

Search Result 754, Processing Time 0.028 seconds

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Hydration Properties of High-strength Cementitious Composites Incorporating Waste Glass Beads (폐유리발포비드를 혼입한 고강도 시멘트 복합체의 수화 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Lee, Sang-Soo;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the effect of a sudden decrease in internal humidity and a decrease in hydration level due to the tight internal structure of high-strength concrete and cement composites was investigated. To verify the change in the internal Si hydration, waste glass foam beads were used as a lightweight aggregate, and the internal unreacted hydrate reduction and hydrate formation tendency were identified over the mid- to long-term. Waste glass foam beads were mixed with 5, 10, and 20 %, and were used by pre-wetting. As the mixing rate of the waste glass foamed beads increased, the strength showed a tendency to decrease. In addition, when the mixing amount of pre-wetted waste glass foam beads increases inside through XRD analysis, TGA analysis, and Si NMR analysis, it is judged that the hydration degree of internal Si is different because moisture is supplied to the paste.

A Study on the Pore Structure and Compressive Strength of Concrete using Metakaolin (메타카올린을 사용한 콘크리트의 공극구조와 압축강도에 관한 연구)

  • Yeo, Dong Ku;Kim, Nam Wook;Song, Jun Ho;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.927-934
    • /
    • 2006
  • According to the high demand of concrete structures with high performance, various studies have examined on the high performance concrete, especially high strength concrete. Various admixtures are required to produce high strength concrete and silica fume has been the most popular admixture. Recently, however, metakaolin, which is similar to silica fume in properties but cheaper, has been introduced to high strength concrete. This study conducted XRD and SEM analyses on a cement paste specimens to clarify metakaolin's performance in pozzolan. Additionally, a concrete specimens were fabricated to analyze its pore structure using Mercury Intrusion Porosimetry and its correlation to the compressive strength. In result, it was found that the average diameter of pore reduced and compressive strength increased as more metakaolin content was added. In addition, a regression analysis of $10nm{\sim}10{\mu}m$ pore and compression strength revealed that these two factors had a high correlation of about 0.93 and 10~15% of metakaolin replacement was most appropriate.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16 (Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할)

  • Sung-Wook Hong;Deokgi Mun;Se-Yun Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Segmentation of material phases through image analysis is essential for analyzing the microstructure of materials. Micro-CT images exhibit variations in grayscale values depending on the phases constituting the material. Phase segmentation is generally achieved by comparing the grayscale values in the images. In the case of waste concrete used as a recycled aggregate, it is challenging to distinguish between hydrated cement paste and natural aggregates, as these components exhibit similar grayscale values in micro-CT images. In this study, we propose a method for automatically separating the aggregates in concrete, in micro-CT images. Utilizing the Unet-VGG16 deep-learning network, we introduce a technique for segmenting the 2D aggregate images and stacking them to obtain 3D aggregate images. Image filtering is employed to separate aggregate particles from the selected 3D aggregate images. The performance of aggregate segmentation is validated through accuracy, precision, recall, and F1-score assessments.

Performance Evaluation of Quality-Improved Recycled Aggregate Using Ultrasonic Wave and Chemical Neutralization Reaction (초음파 세척 및 화학적 중화반응을 이용한 품질 개선된 순환골재의 성능 평가)

  • Jay Jang-Ho Kim;Young-Jun You
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • This paper presents experimental research results to evaluate the applicability of chemical neutralization reaction and ultrasonic wave to remove cement paste and mortar attached to the surface of recycled aggregate. In order to derive optimal ultrasonic cleaning efficiency and chemical neutralization reaction, experiments were conducted using variables such as ultrasonic frequency and type of chemical solution. As a result, the optimal frequency was found to be 24 kHz, and immersion in a 15% hydrochloric acid solution for 30 minutes of stimulation showed the highest efficiency. In addition, the specific gravity, absorption rate, and wear rate of the quality-improved recycled coarse aggregate were similar to those of general aggregate and were found to satisfy all KS F 2527 standards. Therefore, it is believed that the recycled aggregate whose quality has been improved through the method proposed in this study can be used for concrete.

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Effect of Cyclic Wetting-drying on Self-healing of Cementitious Materials Containing Superabsorbent Polymers (습윤/건조 반복 작용이 고흡수율 폴리머를 함유한 시멘트계 재료의 자기치유에 미치는 영향)

  • Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • In this study, the effect of cyclic wetting-drying on the self-healing of cementitious materials containing superabsorbent polymers (SAPs) were experimentally evaluated. In each cycle, cracked cement paste specimens containing various SAP dosages were exposed to wet conditions for 1 h, during which the capillary water absorption tests and water flow tests were conducted, and then exposed to dry conditions for 47 h. The capillary water absorption test results showed that the sorptivity values of the specimen without SAPs, SAP 0.5%, SAP 1.0%, and SAP 1.5% specimens were decreased by approximately 22.9%, 36.8%, 42.8%, and 46.3%, respectively, after 8 cycles. In addition, the water flow test results showed that the amount of water runoff through the cracks of all cracked specimens gradually decreased over wet/dry cycles, especially the reduction ratio of the amount of water runoff increased with increasing SAP dosage. Furthermore, the swelling behavior of SAPs in cracks by in gress water was con firmed via X-ray computed tomography (CT) analysis. These results indicate that the effective crack width can be reduced as SAPs absorb water and swell, while the water absorbed in SAPs can be released to crack surfaces under dry conditions, further promoting healing product formation. This study demon strates that the in corporation of SAPs can in crease the water tightness of cracks, thereby improving the self-healing efficiency of cementitious materials.

Evaluation on Durability of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixture (팽창재와 수축저감제를 사용한 고성능 콘크리트의 내구성 평가)

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.205-211
    • /
    • 2006
  • The objective of this study was to evaluate the durability of low shrinkage high performance concrete(LSHPC), which was combined with expansive additives and shrinkage reducing admixtures. We tested for not only LSHPC but also high performance concrete(HPC) and normal concrete(NC) to be compared with the durability of LSHPC. HPC was made in the same water-binder ratio of LSHPC without expansive additives and shrinkage reducing admixture. As a result, it was found that LSHPC had higher compressive and tensile strength than that of HPC. LSHPC showed more excellent performance than HPC and NC in the case of resistance to chloride ion penetration and resistance to carbonation and also showed nearly 100 durability factor in the freeze-thawing test with 500 cycles. From the examination about the watertightness and the pore distribution, it was found that the durability of LSHPC was improved because its hardened cement paste is organized closer. So we can conclude that when LSHPC is applied to structures in field, it is possible to reduce the shrinkage and crack in concrete and improve the durability.

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.