• 제목/요약/키워드: Cement hydration

검색결과 884건 처리시간 0.031초

Thermal cracking analysis of concrete with cement hydration model and equivalent age method

  • Tian, Ye;Jin, Xianyu;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.271-289
    • /
    • 2013
  • In this research, a developed microstructural model of cement particles was presented to describe the cement hydration procedure. To simplify the hydration process, the whole hydration was analyzed in a series of sub-steps. In each step, the hydration degree, as well as the microstructural size of the hydration cell, was calculated as a function of the radius of the unreacted cement particles. With the consideration of the water consumption and the reduction of the interfacial area between water and hydration products, the micro-level expressions of the cement hydration kinetics were established. Then the heat released and temperature history of the concrete was carried out with the hydration degree obtained from each sub-steps. The equivalent age method based on the Arrhenius law was introduced in this research. Based on the equivalent age method, a maturity model was applied to describe the evolution of the mechanical properties of the material during the hydration process. The finite element program ANSYS was used to analyze the temperature field in concrete structures. Then thermal stress field was calculated using the elasticity modulus obtained from code formulate. And the risk of thermal cracking was estimated by the comparison of thermal stress and concrete tensile strength.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

제지(製紙) Sludge-Cement Board의 제조가능성(製造可能性)에 관(關)한 연구(硏究)(I) -수화반응(水和反應)에 의(依)한 경화장해지수측정(硬化障害指數測定)- (Studies on Manufacturing Possibility of Paper Sludge- Cement Board (I) -Measurement of Inhibitory Index by Hydration Reaction-)

  • 김은익;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.74-81
    • /
    • 1993
  • This experiment was carried out to investigate the reaction of hydration of paper sludge during the setting of portland cement in a paper sludge, wood-cement-water mixturte. The percentage of paper sludge per cement is 7.5%, 15%, 30% respectively. The result indicated that the sludge of 7.5% had the most effect on reaction of hydration, and the sludge of 15% had moderately inhibitory effect but there is still possibility to make sludge-cement board. Paper sludge of 30%, Pinus koraiensis Sieb. et Zucc and Populus euramericana Guinier were proved to have the worst inhibitory effect on cement hydration, so pretreatment will be needed before making board with paper sludge-cement mixture.

  • PDF

저물시멘트비 페이스트의 시멘트수화율 및 자기수축에 관한 연구 (A Study on the Hydration Ratio and Autogenous Shrinkage of Low Water/cement Ratio Paste)

  • 현철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.385-390
    • /
    • 2002
  • Autogenous shrinkage of concrete has been defined as decrease in volume due to hydration cement, not due to other causes such as evaporation, temperature change and external load and so on. For ordinary concretes, autogenous shrinkage is so little compared to the other deformations that it has been dignored. It has recently been proved, however, that autogenous shrinkage considerably increase with decrease in water to cement ratio. And it has been reported that cracking can be caused by autogenous shrinkage, when high- strength concretes were used. In this study, we propose an analytical system to represent autogenous shrinkage in cement paste in order to control crack due to autogenous shrinkage. The system is composed with the hydration model and pore structure model. Contrary to the usual assumption of uniform properties in the hydration progress, the hydration model to refine Tomosawa's represents the situation that inner and outer products are made in cement paste. The pore structure model is based upon the physical phenomenon of ion diffusion in cement paste and chemical phenomenon of hydration in cement particle. The proposed model can predict the pore volume ratio and the pore structure in cement paste under variable environmental conditions satisfactorily The autogenous shrinkage prdiction system with regard to pore structure development and hydration at early ages for different mix-proportions shows a reasonable agreement with the experimental data.

  • PDF

Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy

  • Ylmen, Rikard;Jaglid, Ulf
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.119-125
    • /
    • 2013
  • Carbonation is a natural ageing process for cement. This study focuses on how the carbonation rate varies with selected hydration times and atmospheric conditions during the early stages of reacting dried cement paste. Diffuse reflection Fourier transform infrared spectroscopy is shown to be a suitable technique to monitor the formation of carbonates in cement. Combined with a previously developed freeze drying technique, carbonation can be studied at specific hydration stages. In ambient air both calcium hydroxide and calcium silicate hydrate (C-S-H) in cement are carbonated. Increased hydration time enhances the carbon dioxide uptake, which indicates that the calcium in the hydration products reacts more easily than the calcium in the clinker phase. In a humid $CO_2$ atmosphere, the carbonation process is so pronounced that it decomposes C-S-H into calcium carbonate and silica. In a moist $N_2$ atmosphere no carbonation occurs, but the sulfate chemistry of the cement seems to be affected due to the formation of ettringite.

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

혼화재 종류 및 대체율에 따른 고강도콘크리트의 수화열 저감 효과 (Reducing effect for Hydration Heat of High-Strength Concrete according to Admixture Types and Replacement Ratios)

  • 유범재;김용로;최세진;김상윤;김상규;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.409-414
    • /
    • 2001
  • The hydration of cement paste occurs when the cement is mixed with water. During the hydration, hydration heat causes the thermal stress depending on the size of concrete and the cement content. Especially in the high-strength concrete, we must give care to the concrete due to its large cement content. In this study, conduction calorimeter and concrete insulation hydration heat meter were used to investigate the hydration heat characteristics of cement and concrete. To reduce hydration heat of high-strength concrete, several types of replacement of fly-ash and blast-furnace slag powder were used in this experiment.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향 (Effect of Cement Particle Size on Properties of Ordinary Portland Cement)

  • 변승호;김형철;김재영;최현국;송종택
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구 (The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model)

  • 왕소용;조형규;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF