• Title/Summary/Keyword: Cement Weight

Search Result 748, Processing Time 0.029 seconds

Permeability and abrasion resistance of concretes containing high volume fine fly ash and palm oil fuel ash

  • Homwuttiwong, S.;Jaturapitakkul, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • In this paper, compressive strength, water permeability and abrasion resistance of concretes containing high volume fine fly ash (FFA) and fine ground palm oil fuel ash (GPA) were studied. Portland cement type I was replaced with FFA and GPA at dosages up to 70% by weight of binder. Ground river sand (GRS) was also used to replace Portland cement in order to indicate the level of filler effect. Results indicated that FFA was slightly more reactive than GPA. The replacement of 40-70% of FFA produced concretes with compressive strength, permeability and abrasion resistance comparable to those of normal concretes. The incorporation of GPA slightly reduced the performances of concretes as compared to those of FFA concretes. The reduction of Portland cement was partly compensated by the increase in pozzolanic activity of the fine fly ash and palm oil fuel ash and thus enabled the large replacement levels.

Study on Setting Time Measuring Methods of a Cement Accelerating Admixture (시멘트 급결제의 응결시간 측정방법에 대한 연구)

  • Heo Gweon;Choi Hong Shik;Lee Si Woo;Yi Seong Tae;Jung Yi Seok;Kwak Hong Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.317-320
    • /
    • 2004
  • The setting time is very important factor affecting the quality of tunnel lining and reinforcement of sloped slope etc. Currently, however, the quality criteria of accelerating admixture to improve it is not established well. In this study, evaluation on setting time measuring methods of a cement accelerating admixture was performed. Six types of measuring methods were checked and a proper measuring method of the admixture were proposed as fellows: (1) the temperature of materials used shall be controlled exactly and (2) to evaluate the properties of it, an admixture usage of $5\%$ (ratio of cement weight) is recommended.

  • PDF

A Study on The Hydration Heat Characteristics of non-fired Hwangto Substituted Concrete (비소성 황토 치환 콘크리트의 수화열 발현 특성 고찰)

  • Park, Min-Han;Suh, Dong-Kyun;Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.34-35
    • /
    • 2021
  • In this study, we compared and analyzed hydration heat of the Concrete(NC) and non-fired Hwangto Concrete(HT). The Concrete(NC) was based on the mix that showed 30, 45 MPa on compressive strength on 28th and Only cement was used to make it. and We substituted 30% of weight of unit cement to non-fired Hwangto to create non-fired Hwangto Concrete(HT).

  • PDF

An Experimental Study on the Mechanical Properties of Permeable Polymer Concrete (투수용 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.95-105
    • /
    • 1996
  • This study was performed to evaluate the mechanical properties of permeable polymer concrete using fillers and unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of 1, 663~ l, 892kg/$cm^3$, the weights of those concrete were decreased 18~28% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash filled permeable polymer concrete, it was increased 22% by compressive strength, 190% by tensile strength and 192% by bending strength than that of the normal cement concrete, respectively. 3. The external strength of permeable pipe was in the range of 3, 083~3, 793kg/m, the external strengths of those concrete were increased 2~26% than that of the normal cement concrete. Accordingly, these permeable polymer concrete pipe can be used to the members and structures which need external strength. 4. The static modulus of elasticity was in the range of $5.7{\times} 10^4 ~ 15.4{\times} 10{^4}kg/cm^2 $, which was approximately 35~64% of that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $83{\times} 10^3 ~ 211{\times} 10{^3}kg/cm^2 $, which was approximately Ins compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 22~45% than that of the static modulus. 6. The ultrasonic pulse velocity was in the range of 2, 584 ~ 3, 587m/sec, . which was showed about the same compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was in the range of$0.58~8.88 {\ell}/cm^2/hr$, , and it was larglely dependent upon the mixing ratio. These concrete can be used to the structures which need water permeability.

  • PDF

A Study on the Effect of Concrete Strength by Pozzolan and High-early Strength Cement (조강 및 포조란시멘트 의결경화촉진이 콘크리트 강도에 미치는 영향에 관한 연구)

  • 전현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2677-2684
    • /
    • 1972
  • This study was carried out to search for an effect on strengths of a pozzolan and a high-early strength cements due to accelerating the initial setting and a rate of strength development at early age, and to obtain the effects applicable for structural construction works safety in the cold winter weather. The results of the study were as follows: 1. The early strength of high-early strength cement was higher than an ordinary portland cement(Type I). 2. High-early strength cement had a characteristic suitable for construction works in the cold weather due to the rate of acceleration of the eary strength. 3. When using pozzolan cements, a weight proportion should be considered in mix design since the pozzolan cement has a lower specific gravity than other portland cements. 4. It was desirable for the pozzolan cement to shorten the storage period since particles of the pozzolan cement was so fine that it was likely to weathering.

  • PDF

Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network

  • Mohebbi, Alireze;Shekarchi, Mohammad;Mahoutian, Mehrdad;Mohebbi, Shima
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2011
  • The main purpose of this study includes investigation of the rheological properties of fresh self consolidating cement paste containing chemical and mineral additives using Artificial Neural Network (ANN) model. In order to develop the model, 200 different mixes are cast in the laboratory as a part of an extensive experimental research program. The data used in the ANN model are arranged in a format of fourteen input parameters covering water-binder ratio, four different mineral additives (calcium carbonate, metakaolin, silica fume, and limestone), five different superplasticizers based on the poly carboxylate and naphthalene and four different Viscosity Modified Admixtures (VMAs). Two common output parameters including the mini slump value and flow cone time are chosen for measuring the rheological properties of fresh self consolidating cement paste. Having validated the model, the influence of effective parameters on the rheological properties of fresh self consolidating cement paste is investigated based on the ANN model outputs. The output results of the model are then compared with the results of previous studies performed by other researchers. Ultimately, the analysis of the model outputs determines the optimal percentage of additives which has a strong influence on the rheological properties of fresh self consolidating cement paste. The proposed ANN model shows that metakaolin and silica fume affect the rheological properties in the same manner. In addition, for providing the suitable rheological properties, the ANN model introduces the optimal percentage of metakaolin, silica fume, calcium carbonate and limestone as 15, 15, 20 and 20% by cement weight, respectively.

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Fluidity and Hydration Properties of Cement Paste Added Zinc Fluosilicate(ZnSiF6, aq.) (규불화아연(ZnSiF6, aq)이 첨가된 시멘트의 유동성과 수화특성)

  • Kim, Do-Su;Khil, Bae-Su;Lim, Heon-Seong;Nam, Jae-Hyun;Rho, Jae-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • Zinc fluosilicate ($ZnSiF_6$, 15% aqueous solution) was prepared using zinc oxide (ZnO) and fluosilicic acid ($H_2SiF_6$) by soluiton synthetic method. The fluidity and hydration properties of cement which was added $ZnSiF_6$ (aq.) as an additive for cement were studied. At water to cement ratio (W/C) equals to 0.45, the initial fluidity and slump loss of cement paste which the addition of $ZnSiF_6$ (aq.) was increased from 1.0% to 4.0% based on cement weight were investigated. Initial fluidity of cement paste was measured by mini-slump test and slump loss was examined by measuring the fluidity variation of cement paste with time elapsed from 0 min to 120 min at intervals 30 min. Also, the effect of $ZnSiF_6$ addition on the setting and hydration of cement paste when $ZnSiF_6$ increased in the addition range 1.0% to 3.0% were investigated. The fluidity of cement paste which was added 2.1% $ZnSiF_6$ (aq.) presented the highest value among all addition ranges. The setting time of cement paste was retarded gradually and the heat evolution of hydrated cement was reduced with the increasing of $ZnSiF_6$ addition.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.