• Title/Summary/Keyword: Cement Manufacturing

Search Result 383, Processing Time 0.027 seconds

Characteristics of Hydration and Correlation on Cement-Based Thermal Insulation Material

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.489-496
    • /
    • 2019
  • Cement-based thermal insulation material was manufactured using OPC, lime, anhydrite, and CSA cement in this study. The morphology and physical properties of the material were analyzed using XRD. All samples had ettringite, Ca(OH)2, and CaCO3 crystals. The XRD peak intensity of the ettringite and Ca(OH)2 slightly increased with an increase in curing time from 3 to 7 days. The compressive strength values at 28 days of specimens 1-8 were in the range of 0.25-0.32 MPa, and the compressive strength values of specimens 3-8 were > 0.3 MPa. The coefficients of correlation between compressive strength and apparent gravity at 7 days and those between compressive strength and ettringite/Ca(OH)2 XRD peak intensity at 28 days were above 0.8. That is, the compressive strength exhibited an influence on apparent gravity at 7 days and on hydrate at 28 days. The thermal conductivity of all specimens was 0.041-0.045 W/mK, and the highest value of thermal conductivity was shown by specimen 5. The coefficient of correlation between apparent gravity and thermal conductivity was 0.84. It was concluded that control of raw materials and hydrates must be considered for manufacturing of insulation materials. The cement-based thermal insulation material in this study could be used in construction fields.

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

Characteristics on Compressive Strength of Cement Paste with Content of LRM Neutralized by Nitric Acid and Sulfuric Acid (질산 및 황산에 의해 중화된 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 압축강도 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Lee, Byeong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide (Al(OH)3) and aluminum oxide(Al2O3) from Bauxite ores. In Korea, aproximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of Al2O3 is produced through the Bayer process. Neutralization of red mud will help to reduce the environmental impact caused due to its storage and also lessen significantly the ongoing management of the deposits after closure. It will also open opportunities for re-use of the residue which to date have been prevented because of the high pH. Moreover, attention to liquefied red mud(LRM) that does not require heating and grinding process for recycling is needed. In this paper, characteristics of compressive strength for cement paste with content of LRM neutralized by nitric acid and sulfuric acid. The results showed that compressive strength of cement paste with neutralized LRM is higher than that of cement paste with LRM.

The Experimental Study on Preparation Characteristics of Self-healing Microcapsules for Mixing Cement Composites Utilizing Liquid Inorganic Materials (액상 무기재료를 활용한 시멘트 복합재료 혼합용 자기치유 마이크로 캡슐의 제조 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lim, Hak-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.236-244
    • /
    • 2018
  • In this study, we tried to fabricate self - healing microcapsules using liquid inorganic materials which can be mixed directly with cement composites. The basic properties of the liquid inorganic material were evaluated and microencapsulation was performed. The focus of this paper is on the quality and manufacturing characteristics of cement composites rather than the healing effects of self - healing microcapsules according to mixed capsules. Test results, the self-healing microcapsules encapsulate liquid inorganic material which is stable at room temperature and has high crack followability, and the yield is over 90%. The size of self - healing microcapsule was able to change according to the synthetic agitation speed and it was able to secure more than 70% of target size. In addition, the loss of less than 10% was found to occur through the membrane strengthening of self - healing microcapsules, and it could be reduced by 50% compared with the case without membrane strengthening.

Estimation of Contact Fatigue Life of a Girth Gear Based on Pinwheel (핀 휠 기반 거스 기어의 접촉 피로수명 평가)

  • Kwon, Soon-man;Shin, Heung Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.245-252
    • /
    • 2016
  • Girth gears are applied in the mining, cement, and mineral processing industries and used in various types of horizontal mills, rotary dryers and kilns, and other heavy-gear ring applications. The large ring gears are normally fitted outside mills or kilns to provide the primary rotational drive. Recently, an external pinwheel gear set (e-PGS) was introduced to overcome manufacturing problems associated with girth gears. e-PGS is also suitable for low-speed, heavy-duty mechanical transmission and dusty and poor-lubrication conditions. This paper first presents a new profile modification of root relief for the e-PGS cam pinion. We then investigate load-stress factors to estimate the surface fatigue life by varying the shape design parameters. The results show that the contact fatigue life of an e-PGS can be extended significantly by increasing the profile shift coefficient. However, support bearing life of the pinwheel depends more on the contact force distribution than the profile shift coefficient.

Changes in Hydration and Watertightness of Cement Containing Two-Component Fluosilicate Salt Based Chemical Admixture (2성분 규불화염계 혼화제가 첨가된 시멘트의 수화반응 및 수밀성 변화)

  • Kim, Jae-On;Nam, Jae-Hyun;Kim, Do-Su;Khil, Bae-Su;Lee, Byoung-Ky
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.749-755
    • /
    • 2004
  • Fluosilicic acid ($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicate salts prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicate salts to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. In this study, two-component fluosilicate salt based chemical admixtures (MZ) of $4\%,\;6\%$, and $8\%$ concentration were prepared by the reaction of $H_2SiF_6$ ($25\pm2\%$) and metal salts. The effect of concentration of MZ at a constant adding ratio on the hydration and watertightness of cement were investigated respectively. In a cement containing MZ, metal fluorides such as $CaF_2$ and soluble silica by hydrolysis were newly formed during hydration. The total porosity of the hardened cement was lower in the presence of U because of packing role of metal fluoride and pozzolanic reaction of soluble $SiO_2$. Consequently, the watertightness of the hardened paste containing MZ was more improved than non-added (plain) due to an odd hydration between cement and MZ.

EFFECT OF CAVITY DIVERGENCY ON CEMENT THICKNESS AND BOND STRENGTH OF RESIN INLAY (와벽 이개도가 레진 인레이의 시멘트 두께 및 접착 강도에 미치는 영향)

  • Cha, Yoon-Seog;Cho, Yong-Bum;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.619-627
    • /
    • 1996
  • There are increasing use of composite resin in the posterior teeth and the new indirect inlay technique was introduced for compensating much troubles faced in direct technique. Many researchers insisted that overall properties of restorative materials were enhanced by an additional curing but this technique still has a problems about using cement material. Resin inlay obtains retention force from friction and another adhesion to tooth structure. A shape of cavity preparation was noted but studies about cement thickness and bond strength with cavity divergency are rare. The purpose of this study is to assess the effect of cavity divergency on cement thickness and bond strength of resin inlay. Cavities, which divergency was $6^{\circ}$, $16^{\circ}$, and $26^{\circ}$ in each group, were prepared and their divergency was verified by Adobe Photoshop program through the image capture with stereo microscope and FlexCam. Inlays were fixed into the cavities with a resin cement, Superbond and were handled under chemical (in 75% ethanol for 24 hrs.) and thermal stress (500 cycles from $5^{\circ}$ to $55^{\circ}C$). MXT 70 (x400) was used for measuring the cement thickness and bond strength was evaluated with a universal testing machine. Following results were obtained : 1. The cement thickness in Mean (S.D.) were; 35.58 (10.31)${\mu}m$ in $6^{\circ}$ group, 35.97 (10.49)${\mu}m$ in $16^{\circ}$ group, and 41.43 (9.33)${\mu}m$ in $26^{\circ}$ group. But there was no significant difference between groups. 2. The bond strength in Mean (S.D.) were ; 33.18 (5.53)kg in $6^{\circ}$ group, 23.47 (13.40)kg in $16^{\circ}$ group, and 19.75 (10.48)kg in $26^{\circ}$ group. $6^{\circ}$ group showed significantly higher value compared to $16^{\circ}$ and $26^{\circ}$ groups (p<0.05). Although the results of this study indicate $6^{\circ}$ divergency will be good for resin inlay, cavity preparation with this type will have lots of difficulties in manufacturing, try-in, and cementation procedures, such as deformation. So it is concluded that $16^{\circ}$ divergent cavity preparation is recommended in resin inlay technique.

  • PDF

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

A Study for the Physical Properties of Artificial Admixtured with β-NSF Base & Vinsol Base Surfactants (β-NSF계와 빈졸계 계면활성제로 변성된 인조석의 물성)

  • Cho, Heon-young;Park, Seong-ki;Suh, Jung-mok;Kim, Jin-man
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.592-598
    • /
    • 1999
  • Exterior finishing materials of artificial stones are manufactured with the mixture of water, cement, stone powder and light-weight aggregate. In this research, we tried to find a way of increasing the physical properties and decreasing the manufacturing cost of artificial stone. So, we used ${\beta}$-NSF base surfactant and vinsol base surfactant to the artificial stone mixture instead of light-weight aggregate. The optimum dosage of the ${\beta}$-NSF and vinsol surfactants for artificial stone are found to be 1.0 wt % of cement, respectively. The physical properties increased ca. 20% and the durability for freezing & thawing of the new artificial stone increased ca. 300%. While the manufacturing cost of the new artificial stone decreased as much as 30%.

  • PDF

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF