• 제목/요약/키워드: Cement Composite

검색결과 607건 처리시간 0.028초

Hexagonal-Boron Nitride 강화 시멘트 복합체의 압축강도 향상에 대한 실험적 연구 (Experimental Study on Improving Compressive Strength of Hexagonal Boron Nitride Reinforced Cement Composite)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.503-508
    • /
    • 2020
  • The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 ㎛) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 ㎛-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성 (Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method.)

  • 최응규
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구 (Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가 (Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite)

  • 이상규;김규용;황의철;손민재;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

수종 치과용 시메트에 의한 주조 포오스트의 유지력에 관한 연구 (A STUDY ON THE RETENTIVE CAPABILITY OF CAST POST CEMENTED WITH SOME DENTAL CEMENTS)

  • 이창호;장익태;김광남
    • 대한치과보철학회지
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 1988
  • An in vitro study was performed to compare the retentive value of cast post cemented with three commonly used cements and one composite resin. Twenty cast posts were made from twenty extracted lower premolars. The samples were randomly divided into four groups. The first group was cemented with zinc phosphate cement, the second group with polycarboxylate cement, the third group with glass-ionomer cement, and the fourth group with composite resin. The tensile load test was performed on an Instron testing machine with crosshead speed of 2 mm/min and the results were compared statistically. The results were as follows ; 1. The mean value of tensile break force of cemented cast post was 23.36Kg in case of zinc phosphate cement, 16.28Kg in case of polycarboxylate cement, 22.09Kg in case of glass-ionomer cement , and 26.88Kg in case of composite resin. 2. Retention was not significantly different among zinc phosphate cement, glass-ionomer cement and composite resin. 3. Polycarboxylate cement was found to be less retentive than zinc phosphate cement, glass-ionomer cement , and composite resin.

  • PDF

광중합형 글라스아이오노머 시멘트와 복합레진과의 전단결합강도에 관한 연구 (A STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO LIGHT-CURING GLASS IONOMER CEMENTS)

  • 김덕;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.447-459
    • /
    • 1994
  • The purpose of this study is to evaluate of shear bond strength of light-curing composite resin to light-curing glass ionomer cement. Composite resin and glass ionomer cement have been widely used as an esthetic filling materials in dental clinics. To achieve better clinical results, sandwich technic was developed with conpensating for disadvantages of these two materials. Especially, light-curing glass ionomer cement provided greately improved bonding strength of teeth or composite resin, and then excellent clinical results can be acquired. In this study, 6 commercial light-curing glass ionomer cements(3 commercial restorative materials : Fuji II LC, Variglass VLC, Vitremer, and 3 commercial lining materials : Fuji Lining LC, Baseline VLC, Vitrebond) were devided two groups. According to manufacturer's appointment, no surface treatment was referred to N groups. Supposing. of clinical practice, surface grinding with water spray at 320 grit sand paper, 40 seconds etching with 37% phosphoric acid, 20 seconds washing, 20 seconds air drying was referred to N groups. Totally 12 experimental groups were devided, and all 120 specimens from 10 specimens of each groups were made. After light-curing composite resin was bonded to light-curing glass ionomer cement, shear bond strength was tested by Instron universal testing machine between glass ionomer cement and composit resin. The data were analyzed statistically by Student's t-test and ANOVA. The obtained results were as follows; 1. In light-curing glass ionomer cement, restorative materials showed higher shear bond strength to composite resin than lining materials(p<0.05). 2. Variglass VLC of restorative material group and Baseline VLC of lining material group have highest shear bond strength to composite resin(p<0.001). 3. In light-curing glass ionomer cement, surface grinding and acid etching reduced shear bond strength to composite resin(p<0.001)}. 4. VGN group 1s highest shear bond strength to composite resin, VBE group is lowest shear bond strength to composite resin(p<0.001).

  • PDF

복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도 (THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS)

  • 한재익;이병태
    • 대한치과교정학회지
    • /
    • 제20권3호
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석 (Strength and Deformation Characteristics, and Numerial Analysis for Cement Admixed Clay and Composite Ground)

  • 전제성
    • 한국지반환경공학회 논문집
    • /
    • 제15권8호
    • /
    • pp.51-58
    • /
    • 2014
  • 본 연구에서는 원지반 점토와 시멘트 혼합토를 포함하는 복합지반을 조성하고 이에 대한 실내 일축압축강도 시험을 통해 원지반 점토 함수비 및 치환율, 시멘트 함유율 등에 따른 강도 및 변경 특성치를 분석하였으며, 혼합토에 대한 개별요소 수치모델링을 수행하였다. 시멘트 함유율 15 % 이상에서는 최종적인 복합지반의 강도에 있어 치환율을 증가시키는 것보다 시멘트 함유량 증가 등을 통한 혼합토의 강도를 증가시키는 것이 더욱 유리함을 알 수 있었으며, 회귀분석을 통해 원지반 점성토의 일축압축강도와 시멘트 혼합토의 시멘트 함유율, 복합지반 치환율을 이용하여 최종적인 복합지반의 일축압축강도 및 탄성계수 예측이 가능하였다. 치환율과 함께 최종적인 복합지반의 강도 및 변형 특성치 예측에 가장 중요한 요소인 시멘트 혼합토의 일축압축강도는 실내시험 및 본딩모델이 적용된 3차원 개별요소 수치모델링을 통해 그 검증과 예측이 가능하였다.

물리적으로 활성화된 플라이애쉬를 함유한 시멘트 및 복합체의 이산화탄소 배출량 평가 (Strength-based Evaluation of CO2 Emission for Cement and Composite Containing Mechanically Sctivated Fly Ash)

  • 순양;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.125-126
    • /
    • 2021
  • Fly ash, has been widely used as one of the main supplementary cementitious materials (SCMs) in the world, to replace part of cement to significantly save energy and reduce greenhouse emission. Via mechanical activation, fly ash can replace more cement without impairing early age compressive strength. This study focuses on the strength-based evaluation of carbon dioxide emission for blended cement composite containing mechanically activated fly ash. Results indicate that under similar compressive strength, a prominent drop has been witnessed in embodied energy of binary cement and CO2 emission of the composite containing mechanically activated fly ash compared with those containing ordinary fly ash.

  • PDF