• Title/Summary/Keyword: Cellulosic wastes

Search Result 30, Processing Time 0.03 seconds

Studies on Hemicellulase System in Aspersillus niger - Bioconversion of Cellulosic Wastes for the Production of D-xylose - (Aspergillus niger의 Hemicellulase계 효소에 관한 연구 -생물전환공정에 의한 D-Xylose의 생산-)

  • Moon Hi. Han;Park, Yang-Do;Park, Myung-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 1983
  • Systematic bioconversion process for the production of xylose from agricultural wastes such as barley straw and corn cobs was studied. After the pretreatment in 1 % NaOH solution for 24 hours at 3$0^{\circ}C$, enzymatic hydrolysis of barley straw for 48 hours at 3$0^{\circ}C$ resulted in the liberation of 15.8% of reducing sugar which is equivalent to 87% of total D-xylose content. Among various agricultural wastes, corn cob as well as barley straw was demonstrated to be potent sources for the production of D-xylose by the process of enzymatic conversion.

  • PDF

Carboxylic Acids Produced from Hydrothermal Treatment of Organic Wastes (유기성 폐기물의 고온고압수 반응에 의한 카르복시산 생성)

  • 강길윤;오창섭;김용하
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.228-233
    • /
    • 2004
  • This paper reports production of low-molecular weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds with or without oxidant (H$_2$O$_2$). Organic acids such as acetic, formic, succinic and lactic acids were obtained. This result increased to 42mg/g dry waste fish entrails in the presence of H$_2$O$_2$. Experiments on glucose representing cellulosic wastes were also carried out, getting acetic acid of about 29mg/g glucose. Studies on temperature dependance of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general. results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.

Studies on the Fermentative Utilization of Cellulosic Wastes (part III) Production of Yeast from the Hydrolyzate of Rice straw, Rice hull and Corn Starch Pulp. (폐섬유자원의 발효공학적 이용에 관한 연구 (제3보) 볏짚, 왕겨및 전분박 당화액을 이용한 효모배양)

  • 성낙계;심기환;이천수
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.152-158
    • /
    • 1976
  • Cultivation condition of yeast on the utilization of fermentable substrate from the cellulosic wastes such as rice hull, rice straw and corn starch cake was investigated. The results obtained were summarized as follows;1. Corn starch cake was respectively added to rice hull and rice straw in order to increase sugar concentration in the hydrolyzate, and then hydrolyzed. As the result, concentration of sugar in hydrolyzed solution of rice hull was 9.12%, in that of rice straw was 7.98%. 2. It was found that calcium carbonate as a neutralizer was the most effective to prepare the culture broth of yeast. 3. An optimal growth of Hansenula subpelliculosa GFY-2 was observed in the medium prepared by adding 0.3% of ammonium sulfate, 0.4% of potassium phosphate dibasic, 0.02% of magnesium sulfate, sodium chloride and calcium chloride to hydrolyaed sugar solution, respectively. 4. Hansenula subpellicuiosa GFY-2 cultured in the substrate solution which of rice hull and rice straw added to corn starch cake was assimilated more than 90% of sugar in the hydrolyzate within 48 hours. The yeast cells yielded in rice hull was 46.5%, and that of rice straw 45.4% to utilized sugars.

  • PDF

Studies on the Fermentative Utilization of Cellulosic Wastes. (Part V) Utilization of Cellulomonas sp. (폐섬유자원의 발효공학적 이용에 관한 연구 (제오보) 분리균 Cellulomonas속 균주의 이용성)

  • 심기환;성낙기;윤한대
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.24-28
    • /
    • 1977
  • For the production of microbial cells from cellulosie materials by cellulore-assimilating bacteria, Cellulomonas flavigena GFB 24-1, isolated by authors, utilization of this organism on some microbiological properties was investigated. The results of these studies were summarized at follows; 1. When the organism was incubated in the growth medium at pH 7.0 for 50 hours, its growth was the most effective and the level of excreted total protein in the menstruum increased continuously during the stationary phase of cell growth. 2. The optimal enzyme activity was observed in the pH region of 5 to 7 and culture period of 40 to 50 hours. 3. The microbial degestibility of cellulosic wastes such as sawdust, rice hull, rice straw, peanut hull and used newspaper was less than 30%, whereas that of cellulose powder was 47.1% and rice straw was digested 77% by NaOH treatment. 4. Bacterial cells incubated in the growth medium were increased up to 8% of sustrate concentration and showed a decrease on further concentration. 5. The production of microbial cells from NaOH treated rice straw was obtained 10.6mg/ml of culture medium.

  • PDF

Enzymatic saccarification of cellulosic wastes by pectinase

  • Lee, Ji-Eun;Kim, Sam-Gon;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.512-516
    • /
    • 2003
  • The study was aimed to saccharify callulosic waste by pectinase produced from strain KL34 isolated from soil. The enzyme activity in the culture using 1%(w/v) fruit waste as carbon source reached to 3.8 U/ml. In the enzymatic hydrolysis of cellulosic waste, we obtained 9.5g/L reducing sugar in the condition of supernatant containing 5 U/ml enzyme and 10%(w/v) apple rind as substrate. Additionally, in enzymatic hydrolysis of food waste using pectinase from KL34, reducing sugar of 12.7g/L was obtained, indicating enhancement of 1.6 fold compared with that of only cellulase employment.

  • PDF

Studies on the Microbial Utilization of Agricultural Wastes (Part 3) Effects of Alkali Treatments of the Wastes on the Production of Cellulosic Single-Cell Protein (농산폐자원의 미생물학적 이용이 관한 연구(제3보) -알카리 전처리가 -섬유소단세포단백 생산에 미치는 영향-)

  • Bae, Moo;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.2
    • /
    • pp.79-82
    • /
    • 1974
  • Present experiments were designed to estimate the effects of pretreatments by various kinds of alkalis to the agricultural wastes such as cereal straws as the substrate on the production of cellulosic single-cell protein. Among the various kinds of alkalis NaOH was proved to be the most effective on improving the digestibility of cellulose by the bacteria isolated. NH$_4$OH which is inferior to NaOH in the effectiveness of treatment might have more economic advantage in the price, and the ammonium salt resulted from the neutralization can be used as the nitrogen source by bacteria. The treatment with higher concentration than 1 normality of NH$_4$OH didn't increase the productivility of cell mass. About five per cent of (NH$_4$)$_2$SO$_4$ in medium resulted from the neutralization didn't have any influence in the cell mass productivility. Futhermore, the cell mass productibility was higher in the case of neutralization than alkali free washing. The digestibility of straws was increased from 7.9% to 46.0% by NH$_4$OH treatment, and 6.3∼6.45g of dry cell were obtained from 40g of NH$_4$OH treated straws. In the case of NaOH treatment, 8.6g of cell mass was obtained from 40g of substrate.

  • PDF

Studies on the Utilization of Agricultural Wastes.(Part I) Acid-Hydrolysis of Straws and the Utilization of the Hydrolyzate (농산폐자원의 이용에 관한 연구(제일보) 산당화 및 당화액을 이용한 효모 생산)

  • Bae, Moo;Kim, Byung-Hong;Yoon, Ae-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 1973
  • A method for acid-hydrolysis of agricultural wastes and its utilization was investigated. In order to obtain fermentable sugar solution from cellulosic wastes such as cereal straws and hulls, in particular, of rice, barley and wheat, the chemical compositions were analyzed and optimum conditions of hydrolysis determined. The cereal straws contain 42 to 55 % of crude cellulose including hemicellulose. On the hydrolysis with 1% of sulfuric acid at 40 psig, 35.6% of the reducing sugar based on the weight of dry matter was formed from rice straw, (variety Chinheung) in 30 min. More powerful condition of hydrolysis would appear to decompose the sugar formed into other compounds, for instance, furfural. Under atmospheric pressure with 5% of the acid, rice straw was hydrolyzed to 35% of reducing sugar content in 3 hours. Candida utilis could assimilate the sugars in the hydrolyzate up to more than 97%, and a yield of the yeast cells reached 55% to the utilized sugars.

  • PDF

Improvement of Cellulolytic Activity of Pleurotus florida through Radiation Mutagenesis

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • A mushroom mutant with increased cellulolytic activity was developed through radiation mutagenesis. The homogenized hypha suspension of Pleurotus florida was exposed to gamma radiation ($^{60}Co$, AECL) at the dose of $LD_{99}$ (0.51 kGy, $D_{10}$; 0.26 kGy). Among 16 mutants, Pf CM4 showed 17.24% more cellulolytic activity than the wild type (p<0.05). It was observed that Pf CM4 can utilize all kinds of carbon sources tested for their mycelia growth. Starch, xylan, and glucose favourably supported the radial mycelia extension. Yeast extract and $NH_4NO_3$ have been recorded as the best organic and inorganic nitrogen sources, respectively. Pf CM4 was found to grow significantly faster, even at high temperature ($30^{\circ}C$), than wild type (p<0.05), and the optimal pH was 5.5~6.5. This study reveals that the mutant Pf CM4 could be employed for the effective recycling of cellulosic wastes, in addition to mushroom farming.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

A Study on Pyrolysis of Cellulosic Organic Solid Wastes (셀룰로오스질 유기고형폐물의 열분해에 관한 연구)

  • Park Nae Joung
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 1977
  • Cellulosic organic solid wastes such as bark and sawdust, and filter papers as a pure cellulose were pyrolyzed at $300^{\circ}C$ under nitrogen current and mixed current of nitrogen and air. Amounts of condensates collected in air, water, and dry ice-acetone cooling traps, noncondensable gases, and carbonized residues were surveyed. The components of volatile liquids condensed in dry ice-acetone trap were separated by means of gas chromatograph and identified by retention times and syringe reactions. Pyrolysis under nitrogen current produced 13.4∼29.6${\%}$ of tar, 0.01∼0.12${\%}$ of aqueous liquids, 0.24∼1.43${\%}$ of volatile liquids, 9.84∼42.41${\%}$ of noncondensable gases, and 44.0∼65.81${\%}$ of carbonized residues. Pyrolysis under mixed current decreased tar and condensable liquids, but increased noncondensable gases.Volatile liquids collected under nitrogen current separated into the same 19 components by Porapak Q column regardless of the materials and only difference among materials was relative amounts of components. Volatile liquids collected under mixed current separated into six components and mainly lower molecular weight compounds such as methanol and formaldehyde were produced. According to the retention times and syringe reactions, methanol, formaldehyde, acetone, acetaldehyde, acetic acid, and three other compounds presumably containing hydroxyl group in the molecular structure were identified out of 19 compounds.

  • PDF