• 제목/요약/키워드: Cellulolytic fungi

검색결과 47건 처리시간 0.021초

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

Detection of Cellulolytic Activity in Ophiostoma and Leptographium species by Chromogenic Reaction

  • Hyun, Min-Woo;Yoon, Ji-Hwan;Park, Wook-Ha;Kim, Seong-Hwan
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.108-110
    • /
    • 2006
  • To understand the ability of producing cellulolytic enzyme activity in the sapstaining fungi, four species of Ophiostoma and two species of Leptographium were investigated in the culture media containing each of cellulose substrates such as CM-cellulose, Avicel and D-cellobiose and each of chromogenic dyes such as Congo-Red, Phenol Red, Remazol Brilliant Blue and Tryphan Blue. When the fungi were grown for $5{\sim}7$ days at $25^{\circ}C$, the formation of clear zone by chromogenic reaction around the margin of the fungal colony was demonstrated in all the culture media Congo-Red containing CM-cellulose. There was difference in the formation of clear zone among the dyes. Only Ophiostoma setosum and Leptographium spp. showed cellulolytic activity to the three substrates. Overall, the results of this study show that ophiostomatoid sapstaining fungi can produce cellulolytic enzymes.

Phyllosphere and Phylloplane Fungi of Banana Cultivated in Upper Egypt and their Cellulolytic Ability

  • El-Said, A.H.M.
    • Mycobiology
    • /
    • 제29권4호
    • /
    • pp.210-217
    • /
    • 2001
  • Seventy-three species and five varieties belonging to 36 genera were collected from leaf surfaces of banana plants on glucose and cellulose-Czapek's agar at $28^{\circ}C$. The results obtained from leaf surfaces(phyllosphere and phylloplane) were basically similar on the two types of media and the most common fungi were Alternaria, Aspergillus, Chaetomium, Cladosporium, Cochliobolus, Curvularia, Gibberella, Memnoniella, Mycosphaerella, Setosphaeria and Stachybotrys. The monthly counts of these fungi were irregularly fluctuated giving maxima at various months. Chaetomium globosum was in the top of fungi in producing both exo- and endo-$\beta$-l,4-glucanases among the 34 tested isolates obtained from leaves(phylloplane) on cellulose-Czapek's agar. Maximum production of these enzymes by C. globosum was 6 and 8 days after incubation at $25^{\circ}C$ with culture medium containing wheat bran as a carbon source and peptone as a nitrogen source and initially adjusted to pH 6.

  • PDF

광주지역의 토양미생물과 물리화학적 특성에 관한 연구 (Studies on the Soil Microoganisms and Physiochemical Properties in Kwangju area)

  • 김상문
    • 한국자원식물학회지
    • /
    • 제4권2호
    • /
    • pp.51-58
    • /
    • 1991
  • With the soil samples collected from 33 locations in Kwangju area, the physiochemical properties of soil and soil microorganisms have been studied and the results of'the analysis were as follows ;1 . Tlle temperatilre, pH, moisture and organic matter of sampling s'tes were measured in the range of 21.O~28.O$^{\circ}C$, 4.0"6.6, 2.1"24.0% and 2.8~22.0% respectively.and that showed wide range distribution in moisture and organio mattrr particulary.and averase was 24.$^{\circ}C$ of temperature, 4.9 of pH, 11.9% of moisture and 8.9% of'organic matter.2. The general bacterial number, cellulolytic bacterial number, general fungal number and cellulolytic fungal number were measured in tile range of 23$\times$10$^{[-995]}$ _1548x10$^{[-995]}$ , 8.0$\times$10$^{[-995]}$ ~412.0$\times$10$^{[-995]}$ , 0.3$\times$10$^{[-994]}$ ~56.4$\times$10$^{[-994]}$ and 0.Ix10$^{[-994]}$ ~17.2x10$^{[-994]}$ , respectivelyand average was 378.4$\times$10$^{[-995]}$ of general bacteria, 102.5$\times$10$^{[-995]}$ of cellulolytic bacteria.13.OX10$^{[-994]}$ of general fungi and 4.3$\times$10$^{[-994]}$ of cellulolytic fungi.tic fungi.

  • PDF

Cellulose Utilization and Protein Productivity of Some Cellulolytic Fungal Co-cultures

  • Eyini, M.;Babitha, S.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제30권3호
    • /
    • pp.166-169
    • /
    • 2002
  • Protein productivity by the cellulolytic fungi, Trichoderma viride(MTCC 800), Chaetomium globosum and Aspergillus terreus was compared in co-culture and mixed culture fermentations of cashewnut bran. Co-cultures were more effective in substrate saccharification, which ranged between $85{\sim}88%$ compared to the $62{\sim}67%$ saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. The maximum 16.4% biomass protein and the highest protein productivity(0.58%) were shown by T. viride and A. terreus co-culture. A. terreus performed better in co-culture in the presence of T. viride rather than with C. globosum. Among the cellulolytic enzymes, FPase(Filter Paper Cellulase) activity was significantly higher in all the co-cultures and in the mixed culture than in their respective monocultures. Mixed culture fermentation involving all the three fungi was not effective in increasing the per cent saccharification or the biomass protein content over the co-cultures.

한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명 (Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat)

  • 김창현;이성실
    • Journal of Animal Science and Technology
    • /
    • 제45권6호
    • /
    • pp.1019-1030
    • /
    • 2003
  • 본 연구는 국내의 재래 반추동물인 재래산양과 한우의 장내에 서식하며 강력한 섬유소를 분해하는 혐기 곰팡이를 탐색하고 분리하여 섬유소 분해 특성을 구명하고자 실시되었다. 산양의 반추위로부터 16종과 한우의 십이지장 소화물로부터 5종의 혐기 곰팡이를 분리하여 총 21종의 혐기성 곰팡이가 분리되었다. 섬유소 분해효소의 활력을 측정하여 그 중 섬유소 분해력이 높은 4종의 곰팡이에 대하여 광학현미경에 의한 형태학적 관찰을 기초로 동정 작업을 수행하였다. NLRI-M003은 monocentric 성장형태, 구형의 포자낭, filamentous rhizoid 및 유주자의 flagella가 다수인 Neocallimastix sp., NLRI-M014는 monocentric 성장형태, 방추형의 포자낭, filamentous rhizoid 및 유주자의 flagella가 단수인 Piromyces sp.로, NLRI-T004는 monocentric 성장형태, 난형의 포자낭, filamentous rhizoid 및 유주자의 fagella 수가 다수인 Neocallimastix sp.로 각각 확인되었다. NLRI-M001은 Orpinomyces sp. 와 유사한 것으로 추측되나 지금까지 밝혀진 곰팡이 이외에 다른 밝혀지지 않은 곰팡이가 존재할 가능성이 있을 것으로 평가되어 더욱 더 세부적인 조사가 필요하다고 사료되었다. 혐기 곰팡이의 섬유소 분해 특성을 조사하기 위해 산양의 반추위로부터 분리된 NLRI-M003 혐기 곰팡이 배양액을 2% 첨가하여 혼합 반추위 미생물의 in vitro 건물 분해율을 볏짚과 filter paper를 기질로 하여 조사하였다. 모든 처리구에서 혐기 곰팡이 배양액을 첨가한 첨가구가 무첨가구에 비하여 볏짚의 경우 약 4%이상(p〈0.05) 그리고 filtre paper를 기질로 사용시 11% 이상(p〈0.001)의 분해율이 증가하였다. 또한 CMCase와 xylanase 효소의 활력도 첨가구에서 증가하였으며 특히 반추위 곰팡이는 강력한 xylanase 효소활력이 높음을 보여주었다.

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

섬유소 분해균 Aspergillus sp. HB 1의 세포융합에 관한 연구 (Cell Fusion of Cellulolytic Fungi, Aspergillus sp. HB1)

  • 김주호;장성열;최영길
    • 한국균학회지
    • /
    • 제15권2호
    • /
    • pp.80-86
    • /
    • 1987
  • 자연계에서 섬유소분해능이 우수한 균을 분리하였고 섬유소분해능을 더욱 증진시키기 위한 기초단계로서 그 분리균주의 원형질체 생성과 융합의 최적조건을 조사하였다. 토양에서 채취한 시료로부터 섬유소분해능력이 우수한 Aspergillus sp., Penicillium sp., Trichoderma sp., 3균주를 분리 동정하였고 산업적으로 유용한 균주이며 cellulase activity가 있는 Aspergillus niger를 비교균주로 선택하여 각각의 효소활성도를 비교 조사한 결과, Aspergillus sp.가 가장 좋은 효소활성도를 보였으며 그 다음 Penicillium sp., Trichoderma sp., 그리고 Aspergillus niger 순이었다. 효소활성도가 가장 좋은 Aspergillus sp.에 자외선$(12erg/sec/mm^2)$을 4 분 30초 동안 조사하여 영양요구성 변이주를 유도, 분리하였다. 세포벽분해효소로는 pH6.0에서 ${\beta}-glucuronidase$가 효과적이었고 그 효소를 농도별로 처리해본 결과 5, 000unit/ml가 최적농도이었다. 재생률은 삼투안정제로 0.6M KCI을 사응하여 pH6.0에서보았을 때 야생형은 7.0%, met. 영양요구주는 7.5%, arg. 영양요구주는 5.2%이있다. 영양요구성변이주간의 원형질체융합에 필요한 PEG는 분자량이 6,000인 것이 좋았으며 최적농도는 $30^{\circ}C$ 이었다. 이때 융합율은 1.2%까지 획득하었다.

  • PDF

Production of Soluble Crude Protein Using Cellulolytic Fungi on Rice Stubble as Substrate under Waste Program Management

  • Vibha, Vibha;Sinha, Asha
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.147-149
    • /
    • 2005
  • The investigation was undertaken to enhance the decomposition process by pre-treatment of rice stubble, having higher concentration of lignin. Air-dried rice stubble was treated with 1.8 liter of 1% NaOH and autoclaved. Six cellulolytic fungi, Trichoderma harzianum, Penicillium citrinum, Curvularia lunata, Aspergillus flavus and Alternaria alternata were grown in basal synthetic medium along with delignified rice-residue as carbon source for production of soluble crude protein. Though the loss of cellulose has been observed by all of them but having a considerable status in the presence of T. harzianum and T. harzianum yielded highest percentage of crude protein (27.99%) with biomass of 375 mg, whereas the lowest protein value (17.91%) was recorded in case of A. niger with biomass of 422 mg. Among the imperfect fungi, T. harzianum was the most potent. Effects of incubation period and nitrogen sources on soluble crude protein production by T. harzianum were also undertaken in this study. Fifth day of incubation period and potassium nitrate as nitrogen source among other nitrogen sources was found most appropriate for soluble crude protein production by the mentioned organism.

Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation

  • Arnthong, Jantima;Siamphan, Chatuphon;Chuaseeharonnachai, Charuwan;Boonyuen, Nattawut;Suwannarangsee, Surisa
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1670-1679
    • /
    • 2020
  • The substantial use of fungal enzymes to degrade lignocellulosic plant biomass has widely been attributed to the extensive requirement of powerful enzyme-producing fungal strains. In this study, a two-step screening procedure for finding cellulolytic fungi, involving a miniaturized culture method with shake-flask fermentation, was proposed and demonstrated. We isolated 297 fungal strains from several cellulose-containing samples found in two different locations in Thailand. By using this screening strategy, we then selected 9 fungal strains based on their potential for cellulase production. Through sequence-based identification of these fungal isolates, 4 species in 4 genera were identified: Aspergillus terreus (3 strains: AG466, AG438 and AG499), Penicillium oxalicum (4 strains: AG452, AG496, AG498 and AG559), Talaromyces siamensis (1 strain: AG548) and Trichoderma afroharzianum (1 strain: AG500). After examining their lignocellulose degradation capacity, our data showed that P. oxalicum AG452 exhibited the highest glucose yield after saccharification of pretreated sugarcane trash, cassava pulp and coffee silverskin. In addition, Ta. siamensis AG548 produced the highest glucose yield after hydrolysis of pretreated sugarcane bagasse. Our study demonstrated that the proposed two-step screening strategy can be further applied for discovering potential cellulolytic fungi isolated from various environmental samples. Meanwhile, the fungal strains isolated in this study will prove useful in the bioconversion of agricultural lignocellulosic residues into valuable biotechnological products.