• Title/Summary/Keyword: Cellular metabolism

Search Result 588, Processing Time 0.024 seconds

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

P62 and the Sequestosome, a Novel Mechanism for Protein Metabolism

  • Shin, Jae-Kyoon
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.629-633
    • /
    • 1998
  • In addition to selecting proteins for degradation by the 26S proteasome, ubiqitination appears to serve other regulatory functions, including for endosomal/lysosomal targeting, protein translocation, and enzyme modification. Currently, little is known how multiubiquitin chains are recognized by these cellular mechanisms. Within the 26S proteasome, one subunit (Mcb1/S5a) has been identified that has affinity for multiubiquitin chains and may function as a ubiquitin receptor. We recently found that a non-proteasomal protein p62 also preferentially binds multiubiquitin chains and forms a novel cytoplasmic structure "sequestosome" which serves as a storage place for ubiquitinated proteins. In the present manuscript, the role and regulation of p62 in relation to the sequestosomal function will be reviewed.

  • PDF

Cholesterol-lowering Efficacy of Unrefined Bran Oil from the Pigmented Black Rice (Oryza sativa L cv. Suwon 415) in Hypercholesterolemic Rats

  • Nam, Yean-Ju;Nam, Seok-Hyun;Kang, Mi-Young
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.457-463
    • /
    • 2008
  • The effects of dietary supplementation of the unrefined rice bran oil from 'Suwon 415' pigmented black rice (BRBO) on cholesterol metabolism and cellular antioxidant status were investigated in hypercholesterolemic rats. The significant reduction of total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) concentrations was observed in the plasma of rats fed BRBO. BRBO also decreased plasma and hepatic oxidative stress as a result of increased levels of hepatic thiobarbituric acid reactive substances (TBARS) levels associated with the elevations of hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities together with increased plasma level of tocopherol. This study indicates that dietary BRBO supplement can leads to the improvement of overall cholesterol metabolism and antioxidant status even more effectively than 'Chuchung' white rice (WRBO). Consumption of BRBO may also protect the liver from oxidative damage caused by lipid peroxidation.

A Time to Fast, a Time to Feast: The Crosstalk between Metabolism and the Circadian Clock

  • Kovac, Judit;Husse, Jana;Oster, Henrik
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.

Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

  • LaBarge, Samuel;Migdal, Christopher;Schenk, Simon
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.297-303
    • /
    • 2015
  • Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.

Metabolomic Response of Chlamydomonas reinhardtii to the Inhibition of Target of Rapamycin (TOR) by Rapamycin

  • Lee, Do Yup;Fiehn, Oliver
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.923-931
    • /
    • 2013
  • Rapamycin, known as an inhibitor of Target of Rapamycin (TOR), is an immunosuppressant drug used to prevent rejection in organ transplantation. Despite the close association of the TOR signaling cascade with various scopes of metabolism, it has not yet been thoroughly investigated at the metabolome level. In our current study, we applied mass spectrometric analysis for profiling primary metabolism in order to capture the responsive dynamics of the Chlamydomonas metabolome to the inhibition of TOR by rapamycin. Accordingly, we identified the impact of the rapamycin treatment at the level of metabolomic phenotypes that were clearly distinguished by multivariate statistical analysis. Pathway analysis pinpointed that inactivation of the TCA cycle was accompanied by the inhibition of cellular growth. Relative to the constant suppression of the TCA cycle, most amino acids were significantly increased in a time-dependent manner by longer exposure to rapamycin treatment, after an initial down-regulation at the early stage of exposure. Finally, we explored the isolation of the responsive metabolic factors into the rapamycin treatment and the culture duration, respectively.

Physio-biochemical changes correlated with cadmium adaptation and detoxification mechanism in klebsiella aerogenes (Klebsiella aerogenes의 카드뮴 적응 및 해독기작에 관련된 생리생화학적인 변화)

  • 이기성;송인극;박영식;윤성녀;최영길
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 1990
  • In the course of operating the accommodative and detoxifying mechanism against cadmium, its physio-biochemical changes were observed in Klebsiella aerogenes ATCC 10031. Changes of enzyme activity concerned phosphate metabolism, changes of phospholipid composition and in view of energy metabolism the changes of the nucleotide pool were examined. Activities of both alkaline and acid phosphatase were derepressed 4-10 folds under cadmium added cultures. Moreover, production of phospholipid such as lysophosphatidyl choline (LPC), phosphatidyl serine (PS) and phosphatidyl ethanolamone (PE) was increased and uridylate nucleotide pool was increased under Cd-surplus culture. These results i.e. overproduction of phosphatase catalyzing phosphate residue, increase of the production of PE and PS which have a close affinity with cadmium, and indrease of uridylate nucleotide pool used as a carrier of polysaccharide synthesis like bacterial capsule exhibited cellular responses for active defence against Cd-pressure. It was postulated that these phenomena should play another assistant roles in Cd-detoxifing mechanism.

  • PDF

Lycorine: A Potential Broad-Spectrum Agent Against Crop Pathogenic Fungi

  • Shen, Jin-Wen;Ruan, Yuan;Ren, Wei;Ma, Bing-Ji;Wang, Xiao-Long;Zheng, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.354-358
    • /
    • 2014
  • A screening test showed that lycorine exhibited significant antifungal activity against 24 pathogenic crop fungi at concentrations of 500 ${\mu}g/ml$ and 100 ${\mu}g/ml$, respectively. Fusarium graminearum was selected for antifungal mechanism studies by observing its mycelial morphology and investigating the variations in its conductivity. In addition, the substance absorption and metabolism of F. graminearum were explored. The mechanism was revealed as being one by which lycorine destroyed the cellular membrane and further influenced substance absorption and cell metabolism.

The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells

  • Popp, Maximilian Wei-Lin;Maquat, Lynne E.
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Mammalian-cell messenger RNAs (mRNAs) are generated in the nucleus from precursor RNAs (pre-mRNAs, which often contain one or more introns) that are complexed with an array of incompletely inventoried proteins. During their biogenesis, pre-mRNAs and their derivative mRNAs are subject to extensive cis-modifications. These modifications promote the binding of distinct polypeptides that mediate a diverse array of functions needed for mRNA metabolism, including nuclear export, inspection by the nonsense-mediated mRNA decay (NMD) quality-control machinery, and synthesis of the encoded protein product. Ribonucleoprotein complex (RNP) remodeling through the loss and gain of protein constituents before and after pre-mRNA splicing, during mRNA export, and within the cytoplasm facilitates NMD, ensuring integrity of the transcriptome. Here we review the mRNP rearrangements that culminate in detection and elimination of faulty transcripts by mammalian-cell NMD.

Metabolic influence on macrophage polarization and pathogenesis

  • Thapa, Bikash;Lee, Keunwook
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.360-372
    • /
    • 2019
  • Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology.