• Title/Summary/Keyword: Cellular mechanism

Search Result 1,256, Processing Time 0.03 seconds

An Emerging New Paradigm of the Control Mechanism of Cellular Functions

  • Park, Chun-Sik
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.14-15
    • /
    • 1999
  • The control mechanism of cellular functions has been classified into two modes: one rapid mechanism occurring within minutes by kinetic alterations of effector proteins without changing the number of effector molecules and another slow mechanism occurring over hours and days by changes in the number of effector molecules without kinetic alterations.(omitted)

  • PDF

A biobehavioral theoretical framework based on the mechanism of cellular aging for nursing interventions to promote autonomic balance (자율신경균형 증진 간호중재를 위한 생행동적 이론적 기틀 구축: 세포노화 기전 기반으로)

  • Nahyun Kim;Jooyeon Park
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Purpose: This study reviewed the pathophysiological mechanisms of cellular aging caused by psychological stress and aimed to establish a biobehavioral theoretical framework for nursing interventions to promote autonomic balance based on these mechanisms. Methods: A comprehensive literature review was conducted. Results: A review of the literature showed that the stress response increases the secretion of catecholamines and glucocorticoids, resulting in a greater allostatic load. This load induces inflammatory reactions and oxidative stress, shortening telomere length and damaging mitochondrial DNA, which can lead to cellular aging. Based on this mechanism, a biobehavioral theoretical framework for nursing interventions was established. This framework focuses on delaying or inhibiting the cellular aging process by acting on the stress response stage and improving autonomic balance. Conclusion: According to the proposed biobehavioral theoretical framework, stress-relieving nursing interventions may act on the mechanism of cellular aging caused by stress responses. We believe that this framework could expand our understanding of the biobehavioral aspects of stress and would facilitate efforts to use biomarkers to evaluate the effectiveness of stress-related nursing interventions at the cellular level.

An Efficient Hand-off Mechanism in Micro-Domain (마이크로 도메인에서의 효율적인 핸드오프 방안)

  • Kim Eung do;Kim Hwa sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.195-202
    • /
    • 2005
  • The third generation cellular system requires the seamless macro/micro mobility support. Mobile IP provides a simple and scalable macro mobility solution but lacks the support for fast handoff control in micro-domain. However, A lot of micro-mobility protocols have been proposed to complement the Mobile IP capability by providing the fast, seamless, and local handoff control. Cellular If also provides the seamless mobility support in limited geographical area. But semi-soft handoff mechanism of Cellular IP produces the packet loss and the duplication problem due to the difference of propagation delay between the new path and the old path. In this paper, we present an efficient handoff mechanism in micro-domain. The proposed handoff mechanism uses the SCD (Suitable Cross Delay) in order to minimize the packet loss and the duplication problem during the handoff. Also, the proposed mechanism is verified by the performance evaluation through the NS-2 Simulation.

Nonsense-mediated mRNA decay at the crossroads of many cellular pathways

  • Lejeune, Fabrice
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.175-185
    • /
    • 2017
  • Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.

Effect of sodium on transmembrane calcium movement in the cat ileal longitudinal muscle

  • Rho, Young-Jae;Yun, Il;Kang, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 1987
  • To get a better insight into the exxistence and the role of a Na-Ca exchange mechanism in smooth muscle, the effect of Na substitution with sucrose on tension development, cellular Ca uptake and $^{45}Ca$ efflux was investigated using isolated cat ileal longitudinal muscle strips. Experimental results were summarized as follows;1) Exposure of the cat ileal longitudinal muscle to Na-free solution induced a contraction, and the magnitude of the contraction increased after incubation of the muscle strips with ouabain ($2{\times10^{-}5}$M) for 1hr. 2) Cellular Ca uptake in Na-free solution increased with an increase in Na content of the Na-loading media, and a linear relationship existed between tissue Na content and cellular Ca uptake for 10 min 3) After tissues were equilibrated in PSS containing $^{45}Ca$ for 2hr, cellular Ca uptake decreased with rising the external Na concentration. 4)Removal of medium Na or inhibition of the Na-K pump decreased the rate of $^{45}Ca$ efflux. These results strongly suggested that Na substitution increases cellular Ca uptake and decreases the rate of $^{45}Ca$ efflux via a Na-Ca exchange mechanism.

  • PDF

An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel (SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구)

  • Kim, Dongchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

A Charging Mechanism in the System Interworking between Wireless LANs and Cellular Networks (무선 LAN과 이동통신망을 연동하는 통합 시스템에서의 과금 방안)

  • 이완연;박찬영
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • In this paper, we investigate a charging mechanism for the system interworking between Wireless Local Area Networks(LANs) and Cellular Networks. Because the charging mechanisms of the two networks are different, a unified charging mechanism is required to correlate the charging informations of the two networks in the system interworking. Therefore, we propose a unified charging mechanism to collect charging information with a combined identifier. Also, we propose a decision method to control the interval of transferring accounting information according to the charging types of users (pre-paid, off-paid, and fixed-rate) and show that the proposed decision method improves the granularity and the communication efficiency of charging informations.

Performance analysis of multiple access mechanism based on error adaptation in CDMA cellular system (CDMA 셀룰러 시스템용 오율 적응 다중 엑세스 기법의 성능분석)

  • 송상호;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.713-720
    • /
    • 1996
  • In recent, the demand of mobile communication system is increasing rapidly. However, since wireless resources is limitted, the protocol to utilize wireless resource efficiently is needed. Up to now, Slotted CDMA_ALOHA(S_CDMA_ALOHA) and Mini-Slotted CDMA_ALOHA(MS_CDMA_ALOHA) methods are proposed as a CDMA_ALOHA mechanism, and it is turned out that MS_CDMA_ALOHA offers betterperformance than S_CDMA_ALOHA mechanism. Also, IS-95 multiple access mechanism has been proposed as common air interface(CAI) protocol of CDMA digital cellular system. However, in former study, the performance evaluations were made without considertion of chnnel characteristics of wireless communication environment. In this paper, a new access mechanism for improring the performance in the DS/CDMA digital cellular environment is suggested. This mechanism is adaptive to the channel condition and based on the conventional MS_CDMA_ALOHA mechanism. Also, the performance of new access mechanism is compared with that of conventional mechanisms, through computer simulation. According tot h simulation results, it is shown that the proposed NA_CDMA_ALOHA(Noise-Adaptation CDMA_ALOHA) mechanism offers better performance than conventional three CDMA_ALOHA mechanisms in view of mean delay time and system throughput characteristics. This phenomenon is due to the fast that NA_CDMA_ALOHA mechanism controls the access attempts efficiently based on the channel condition in heavy traffic environments.

  • PDF

Telomerase: Key to Mortal or Immortal Road

  • Yang, Eun-Young;Sung, Young Hoon;Lee, Han-Woong
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.183-188
    • /
    • 2002
  • Gradual attrition of telomere to a critical short length elicits successive cellular response of cellular senescence and crisis. Cancer cells evade this process by maintaining functional telomeres via one of two known mechanisms of telomere maintenance. The first and most frequent mechanism involves reactivation of enzyme activity of telomerase, a ribonucleoprotein complex mainly via transcriptional up-regulation of TERT, a catalytic subunit of telomerase complex. The second mechanism utilizes telomerase-independent way termed ALT (for Alternative Lengthening of Telomere), which possibly involves recombination pathways. Thus master key for cellular immortalization is supposed to possess adequate telomere reserves. Indeed, telomerase can alone induce the immortalization under culture on feeder cell layers without generally known inactivation mechanism of tumor suppressor genes. Including this phenomena, this review will focus on telomerase and telomere-associated proteins, thereby implication of these proteins for cellular immortalization processes.