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Telomerase: Key to Mortal or Immortal Road
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ABSTRACT
 Gradual attrition of telomere to a critical short length elicits successive cellular response 
of cellular senescence and crisis. Cancer cells evade this process by maintaining 
functional telomeres via one of two known mechanisms of telomere maintenance. The 
first and most frequent mechanism involves reactivation of enzyme activity of 
telomerase, a ribonucleoprotein complex mainly via transcriptional up-regulation of 
TERT, a catalytic subunit of telomerase complex. The second mechanism utilizes 
telomerase-independent way termed ALT (for Alternative Lengthening of Telomere), 
which possibly involves recombination pathways. Thus master key for cellular im-
mortalization is supposed to possess adequate telomere reserves. Indeed, telomerase can 
alone induce the immortalization under culture on feeder cell layers without generally 
known inactivation mechanism of tumor suppressor genes. Including this phenomena, 
this review will focus on telomerase and telomere-associated proteins, thereby im-
plication of these proteins for cellular immortalization processes. (Immune Network 
2002;2(4):183-188)
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Introduction
  Normal human cells possess a limited replicative 
lifespan when cultured in vitro (1). In these cells, 
telomeres, the ends of linear chromosomes, shorten 
with each cell division (2,3). This observation has led 
to the suggestion that telomeres act as a molecular 
counting device that checks the number of cell 
divisions and limits further division, upon shortening 
below a threshold length (4). In contrast, the majority 
of cells derived from spontaneously arising human 
tumors proliferate indefinitely and maintain stable 
telomere lengths (5). This observation has led to the 
inference that maintenance of telomere length is a 
prerequisite for the acquisition of immortalized rep-
licative capacity. In unicellular eukaryotes and in the 
germline of multicellular organisms, replication-associated 
loss of telomeric DNA is counteracted in a variety 
of ways. The best studied of these is the ribonu-
cleoprotein enzyme complex, telomerase, that uses an 
RNA template to add repeats onto the G-rich strand, 

thus extending the single-stranded 3' overhang. TERT, 
catalytic subunit of telomerase, is important to main-
tain the telomere length and TERC, RNA subunit of 
telomerase, is essential for the enzymatic function of 
telomerase. Normal human somatic cells have the 
telomerase activity of either low or undetectable lev-
els and progressive telomere loss occurs with each 
cell division. According to the telomere hypothesis of 
senescence, telomere erosion eventually acts as the 
trigger for cells to senesce, meaning that cell im-
mortalization requires a mechanism for prevention of 
telomere attrition (6).
  Here we summarize the regulation mechanism of 
telomere length, especially by telomere-binding pro-
teins, and recent progress showing the importance of 
telomerase activity for telomere maintenance and 
their role in immortalization.

Important roles of telomere-binding proteins 
on protection and maintenance of chromo-
somal end
  Telomeres are predominately double stranded. 
However, these end in a 30～200 nucleotide single- 
stranded overhang (7-9). This 3＇overhang can in-
vade and anneal with the double-stranded region of 
telomeric DNA to form displacement (D)-loop in the 
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Table I. Telomere binding proteins


Genes Mediator for telomere association Roles in telomeric DNA


POT1 Single stranded telomeric DNA Telomere-length maintenance and
 telomere protection

TRF1 Double stranded telomeric DNA T-loop formation
TRF2 Double stranded telomeric DNA T-loop formation
Tankyrase 1 Via TRF1 Ribosylate TRF1
Tankyrase 2 Via TRF1 Ribosylate TRF1
TIN2 Via TRF1 Negatively regulate telomere length
RAP1 Via TRF2 Regulate telomere length
RAD50/NBS1/MRE11 Via TRF2 Maybe participate in T-loop formation
PINX1 Via TRF1 Bind TERT and inhibit its activity
Ku86 Telomere repeat? Maybe restrict telomerase and DNA

 repair activity
DNA-PKcs Ku proteins Protect telomeres


same telomere (10). This overall feature is called as 
a telomere (T)-loop. Although T-loops can be formed 
on relatively short telomeres, presumably there is a 
minimum size below, which they cannot form.
  Because only the overexpression of the catalytic 
subunit of telomerase (TERT) reconstitutes the 
telomerase activity and increases telomere length in 
telomerase negative cells, it seems that activation of 
TERT is the limiting step for the induction of 
telomerase activity in most cells. Therefore, much 
effort has been focused on the understanding of the 
transcriptional regulation of TERT. Besides the tran-
scriptional regulation of TERT, there may be 
complex and dynamic processes regulating the actual 
activity of telomerase (11).
  However, sufficient length of telomeric DNA does 
not prevent abnormalities in the integrity of 3' 
overhang or mutation of telomere-binding proteins 
from inducing telomere dysfunctions and thereby 
several deleterious cellular effects. Functional telo-
meres require a minimum length of telomere repeats, 
the integrity of 3' overhang and functional telomere- 
binding proteins (Table I). To achieve and maintain 
the correct telomeric structure and the integrity of 3' 
overhang, several telomere-binding proteins are 
needed. Most of them participate in some steps 
involved in the regulation of telomere length and/or 
structure. For example, the formation of T-loops is 
critically dependent on TRF2. It directly binds double 
stranded telomeric DNA and can remodel the 
telomeric DNA into T-loop (10). Elimination of 
TRF2 from telomeric DNA induces immediate de-
protection of chromosomal ends and the cells show 
some features resembling the cellular responses to a 
double strand break (DSB) in the genome. In fact, 

some evidence indicates that components of DNA- 

dependent protein kinase complex are involved in 
signaling pathway induced by abnormal telomeres and 
regulate telomere integrity. For example, in cells from 
Ku86-deficient mice, telomeric fusions occur with 
sufficient length of telomeres at the fusion point (12). 
However, this Ku86 deficiency rescues the end-to- 
end chromosomal fusion induced by critically short 
telomeres in telomerase-deficient mice (13). Also, 
DNA-PKcs deficiency induces effects similar to 
Ku86 deficiency (14). These lines of evidence suggest 
that some components of DNA-PK complex have 
important roles in maintenance of telomere integrity 
and protection of telomeres from DNA repair activity.
  Similar to TRF2, TRF1 binds double stranded 
telomeric DNA. TRF1 and its binding partner, TIN2 
may facilitate or stabilize the formation and/or 
maintenance of T-loops (10,15). Another TRF1 bind-
ing protein, Tankyrase 1 shows poly (adenosine 
diphosphate-ribose) polymerase (PARP) activity and, 
indeed, exerts its activity on TRF1 (16). Tankyrase 
1-mediated ADP-rybosylation of TRF1 decreases the 
telomeric DNA binding activity of TRF1 and pro-
motes telomere elongation in a telomerase-dependent 
manner (17). Tankyrase 2, the homologue of Tanky-
rase 1, can bind to TRF1 and seems to have similar 
roles on telomere (18).
  Whereas TRF1 and TRF2 bind double stranded 
telomeric DNA, Pot1 binds 3' overhang of telomeric 
DNA and seems to have important roles in main-
taining chromosomal stability by capping the single- 
stranded telomeric DNA (19).
  As a result, both telomere length and telomere 
structure are important in protection and main-
tenance of chromosomal end. Also, besides telome-
rase itself, telomere-binding proteins, as well as their 

associated proteins, have pivotal roles on modulation 
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and/or maintenance of telomere length or structure.

Telomerase and immortalization
  The primary hallmark of tumor cells is loss of 
growth control caused by gain-of-function mutations 
in proto-oncogenes, and loss-of-function mutations in 
tumor suppressor genes. A second hallmark of tumor 
cells, common to almost all malignant cancers, is 
cellular immortality. In human tumors, cell immor-
talization almost always involves derepression of the 
gene for the catalytic subunit of telomerase, hTERT 
(20,21). However, it remains controversial whether 
the cell culture immortality of many cancer cells is 
a fundamental property, required for tumorigenesis, 
or a by-product of other genetic changes.
  After finite in vitro cell division, most human 
somatic cells face the loss of their replicative pro-
liferating capacity (1), and are termed cellular senes-
cence. Among a variety of triggers for cellular 
senescence, the telomere shortening that occurs in 
each cell division as a result of the end-replication 
problem of DNA polymerase is recognized as 
"mitotic clock" to control the cellular life span, at 
least in human somatic cells. Given that human cells 
can divide only a limited number of times in culture, 
many researchers have wondered whether there is a 
"clock" that measures cell divisions. Human somatic 
cells were found to have shorter telomeres than 
sperm from the same individuals, which suggests that 
human somatic telomeres shorten during develop-
ment (3,22). Furthermore, telomere length in somatic 
cells, both fibroblasts and leukocytes, from older 
individuals was decreased on average compared with 
telomere length in somatic cells from younger people 
(2,3). Also, telomeres were found to shorten during 
the passage of fibroblasts in culture (3) and in cancers 
compared with adjacent normal tissues (2). These 
results have supported the hypothesis which telo-
merase is shut off in human somatic cells, limiting 
their lifespan, whereas it is activated in cells that 
become immortalized in culture (6,23).
  Although oncogenically transformed cells can 
extend the lifespan of human cells beyond the first 
growth arrest point, known as senescence, these cells 
eventually enter a phase known as crisis and then 
suffer chromosome aberration and massive cell death. 
Rare immortal cells are survived by telomerase acti-
vation (24-26) and this was established by studies of 
telomere length and telomerase activity in mortal and 
immortal human cultured cells. Analysis of telomere 
lengths in human embryonic kidney cells transformed 
with simian virus 40 T antigen shows a steady decline 
until crisis, and then telomere maintenance in the 
survivors. Concordantly, the telomerase enzyme is 
inactive in the precrisis mortal cells and is activated 

in the immortalized cell clones (26,27). Whereas the 
human telomerase RNA subunit is expressed in both 
telomerase-positive and telomerase-negative tissues 
(28,29), the hTERT mRNA is expressed in immortal, 
telomerase-positive cell lines but not in mortal, 
telomerase-negative cells (7,30,31). Furthermore, over-
expression of hTERT in previously telomerase-negative 
cells generates an active telomerase enzyme in these 
cells, confirming that hTERT expression is a key step 
in regulating telomerase activity (32-36). Even more 
dramatically, ectopic expression of the telomerase 
catalytic subunit gene in certain telomerase-negative 
cells is able to extend the lifespan of these cells, 
confirming the model that telomerase can overcome 
the limits of human cell mortality, at least in some 
cases.
  In addition, hTERT expression leads to significant 
lifespan extension in strains of mortal fibroblasts and 
retinal epithelial cells, allowing them to bypass the 
senescence limitation to cell growth (34,36). For 
example, hTERT-immortalized BJ foreskin fibroblasts 
have been found to proliferate for an additional 200 
population doublings compared with control cell 
clones that can double for approximately 80 gen-
erations (37). Telomerase expression is sufficient to 
immortalize some cell types, such as fibroblasts, 
directly, but several reports have claimed that kera-
tinocytes and other types of epithelial cells exhibit an 
additional mechanism of replicative aging involving 
the p16/pRB pathway that is independent of telo-
mere length, and that inactivation of both mech-
anisms is also required for cellular immortalization 
(38-42).
  However, in most of these reports, cells were 
cultured in chemically defined media and proliferated 
for only 15～20 doublings. It was dramatically less 
than the ～50 doublings described previously for the 
growth of keratinocytes on feeder layers (43). Fur-
thermore, 15～20 doublings appear grossly inad-
equate to explain the estimated number of kera-
tinocyte doublings occurring in vivo (44). For these 
reasons, several groups have developed the different 
model systems to examine whether the proposed 
p16/pRB pathway actually represented a telomere- 
independent second mechanism of cellular senes-
cence or was a secondary consequence of particular 
culture conditions. They found that telomerase activity 
alone could immortalize without the inactivation of 
p16/pRB pathway. In other words, human keratino-
cytes grown on appropriate feeder layers could di-
rectly immortalized by hTERT maintenance of 
telomeres without any intervening inactivation of a 
p16/pRB pathway (45,46).
  Human mammary epithelial (HME) cells have been 
described to exhibit the mechanism of senescence 
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Figure 1. Schematic of telomerase hypothesis in immortalization and tumorigenesis. This diagram is based on Neumann AA et al. 
and modified according to recent studies.
(38,47). Generally, it has been known that HME cells 
appear to senesce in two stages. One is an initial 
growth arrest, designated mortality stage 0 (M0), oc-
curring after about 20 doublings. This stage is appa-
rently controlled by the Rb/p16 pathway, because M0 
can either be prevented by E7 (48) or a few cells 
escape spontaneously with reduced p16 expression 
due to promoter methylation (47). The other is subse-
quent M1 growth arrest bypassing by E6 (49,50). In 
some cases, only a subpopulation of cells can emerge 
from mortality stage 2, which is called, as E6/E7- 
expressing cells will enter a period of crisis in culture. 
However, recently, the replicative capacity of HME 
cells can also be extended without inactivating p16 
if these cells are cultured on feeder layers (45,47). 
Finally, culture of human fibroblasts under inade-
quate culture conditions (chemically defined medium 
in the presence of 0.25% serum) recapitulates the 
keratinocyte and HME scenarios. Such fibroblasts 
arrest after ～25 doublings regardless of telomere 
length/telomerase, but can be rescued and immor-
talized following transfer to adequate culture media 
(46). Although one cannot theoretically exclude the 
existence of non-telomere based mechanisms for 
replicative aging, these results establish that at present 
there is no reliable evidence for the presence of a 
second mechanism of replicative aging specifically in 
these cells.

  Analysis of telomerase activity in immortal cells has 
led to the identification of two classes of cells. In one 
class, telomerase is activated. In the other class of 
cells, telomerase activity remains undetectable, and 
telomeres seem to be maintained by a telomerase- 
independent mechanism known as alternative length-
ening of telomeres (ALT). Some of primary human 
tumors as well as immortalized cell lines have likewise 
been observed to include a population of telomerase- 
negative tumors, presumably surviving by ALT 
(51,52). Recently, it was reported that ALT could not 
substitute for telomerase expression and an additional 
function of hTERT that goes beyond its ability to 
elongate telomeres was required for cell transfor-
mation (53). These results clearly indicate that the 
ability of hTERT to elongate telomeres is not es-
sential for facilitating function in tumorigenesis al-
though the telomere lengthening is important to 
acquire the immortality.

Conclusions
  Telomerase is the critical enzyme in overcoming 
growth limitations due to telomere dysfunction. Many 
scientists directly have addressed the role of telomere 
maintenance in control of proliferative potential and 
the mechanisms leading to tumorigenesis. Also, it has 
found that acquirement of immortality requires both 
telomerase activity and inactivation of oncogenes or 
tumor suppressors (Fig. 1a). However, from recent 
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results, under adequate culture conditions, telomerase 
is sufficient to immortalize normal cells leading to 
tumorigenesis. Besides, another functions of telo-
merase are essential for facilitating the tumorigenesis, 
as well as its ability to elongate telomere (Fig. 1b). 
Therefore, telomerase may alone extend the lifespan 
of mortal cells in adequate culture and contribute to 
experimental tumorigenesis. Among the many cellular 
regulatory mechanisms for immortality, the use of 
telomerase-based cell immortalization may offer a 
variety of practical applications in medical research 
and potentially even in improving therapies. To do 
this, continuing challenges for telomerase research 
will be required, including the elucidating the com-
position of telomerase complexes, the role of TERT 
variants, the interactions between telomerase and 
other components of the telomere, control of TERT 
transcription. To understand telomerase biology, we 
are currently studying the different regulation mech-
anisms of telomerase through interacting proteins in 
normal cells and immortalized cells.
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