• Title/Summary/Keyword: Cellular immune response

Search Result 359, Processing Time 0.027 seconds

Implication of microRNA as a potential biomarker of myocarditis

  • Oh, Jin-Hee;Kim, Gi Beom;Seok, Heeyoung
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.230-238
    • /
    • 2022
  • Myocarditis was previously attributed to an epidemic viral infection. Additional harmful reagents, in addition to viruses, play a role in its etiology. Coronavirus disease 2019 (COVID-19) vaccine-induced myocarditis has recently been described, drawing attention to vaccine-induced myocarditis in children and adolescents. Its pathology is based on a series of complex immune responses, including initial innate immune responses in response to viral entry, adaptive immune responses leading to the development of antigen-specific antibodies, and autoimmune responses to cellular injury caused by cardiomyocyte rupture that releases antigens. Chronic inflammation and fibrosis in the myocardium eventually result in cardiac failure. Recent advancements in molecular biology have remarkably increased our understanding of myocarditis. In particular, microRNAs (miRNAs) are a hot topic in terms of the role of new biomarkers and the pathophysiology of myocarditis. Myocarditis has been linked with microRNA-221/222 (miR-221/222), miR-155, miR-10a*, and miR-590. Despite the lack of clinical trials of miRNA intervention in myocarditis yet, multiple clinical trials of miRNAs in other cardiac diseases have been aggressively conducted to help pave the way for future research, which is bolstered by the success of recently U.S. Food and Drug Administration-approved small-RNA medications. This review presents basic information and recent research that focuses on myocarditis and related miRNAs as a potential novel biomarker and the therapeutics.

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Alteration in miRNA Expression Profiling with Response to Nonylphenol in Human Cell Lines

  • Paul, Saswati;Kim, Seung-Jun;Park, Hye-Won;Lee, Seung-Yong;An, Yu-Ri;Oh, Moon-Ju;Jung, Jin-Wook;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Exposures to environmental chemicals that mimic endogenous hormones are proposed for a number of adverse health effects, including infertility, abnormal prenatal and childhood development and above all cancers. In addition, recently miRNA (micro RNA) has been recognized to play an important role in various diseases and in cellular and molecular responses to toxicants. In this study, endocrine disrupting environmental toxicant, nonylphenol (NP) was treated to MCF-7 (Human breast cancer cell) and HepG2 (Human hepatocellular liver carcinoma) cell line at 3 hrs and 48 hrs time point and miRNA analysis using $mirVana^{TM}$ miRNA bioarray was performed and compared with total mRNA microarray data for the same cell line and treatment. Robust data quality was achieved through the use of dye-swap. Analysis of microarray data identifies a total of 20 and 11 miRNA expressions at 3 hrs and 48 hrs exposure to NP in MCF-7 cell line and a total of 14 and 47 miRNA expression at 3 hrs and 48 hrs exposure respectively to NP in HepG2 cell line. Expression profiling of the selected miRNA (let-7c, miR-16, miR-195, miR-200b, miR200c, miR-205, and miR-589) reveals changes in the expression of target genes related to metabolism, immune response, apoptosis, and cell differentiation. The present study can be informative and helpful to understand the role of miRNA in molecular mechanism of chemical toxicity and their influence on hormone dependent disease. Also this study may prove to be a valuable tool for screening potential estrogen mimicking pollutants in the environment.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.

Induction of Cytotoxic T Lymphocyte Response against the Core and NS3 Genes of the Hepatitis C Virus in Balb/c Mice

  • Kim, Na-Young;Sohn, He-Kwang;Choe, Joon-Ho;Park, Sang-Dai;Seong, Rho-Hyun
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.337-341
    • /
    • 1999
  • Hepatitis C virus (HCV) is a positive strand RNA virus of the Flaviviridae family and the major cause of post-transfusion non-A, non-B hepatitis. Vaccine development for HCV is essential but has been slowed by poor understanding of the type of immunity that naturally terminates HCV infection. The DNA-based immunization technique offers the potential advantage of including cellular immune responses against conserved internal proteins of a virus, as well as the generation of antibodies to viral surface proteins. Here, we demonstrate that cell lines expressing the HCV core and/or NS3 proteins can induce a specific CTL response in mice, and these results suggest a possibility that the HCV core and NS3 DNA can be used to induce CTL activity against the antigen in mice and can be further developed as a therapeutic and preventive DNA vaccine.

  • PDF

Effect of Dehydration and Rehydration of the pH-Sensitive Liposomes Containing Chimeric gag-V3 Virus Like Particle on Their Long-term Stability

  • Chang, Jin-Soo;Park, Myeong-Jun;Kim, Tae-Yeon;Woo, Gyu-Jin;Chung, Soo-il;Cheong, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • One of the practical limitations with the use of liposomes for delivery of the pharmaceutical substances such antigens is that liposomes are relatively unstable in storage. In order to extend the stability of liposome in storage without affecting their functional activity, solution-type liposomes were dehydrated to form a structurally intact dry liposomes. Comparative immunological evaluation was carried out for both dry and solution-type liposomes containing gag-V3 chimera, consequently it was found that dry liposomes elicited both humoral and cellular response as efficiently as solution-type liposemes did against the same gag-V3 antigen. Especially, long-term stability of the liposomes was remarkably enhanced by the dehydration made to loposomes without a significant change in its ability to elicit immune response in vivo. These results indicate that dry pH-sensitive liposome may become an effective delivery and adjuvant system for general vaccine development.

  • PDF

The serine threonine kinase RIP3: lost and found

  • Morgan, Michael J.;Kim, You-Sun
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.303-312
    • /
    • 2015
  • Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response. [BMB Reports 2015; 48(6): 303-312]

Microarray Analysis of the Hypoxia-induced Gene Expression Profile in Malignant C6 Glioma Cells

  • Huang, Xiao-Dong;Wang, Ze-Fen;Dai, Li-Ming;Li, Zhi-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4793-4799
    • /
    • 2012
  • Hypoxia is commonly featured during glioma growth and plays an important role in the processes underlying tumor progression to increasing malignancy. Here we compared the gene expression profiles of rat C6 malignant glioma cells under normoxic and hypoxic conditions by cDNA microarray analysis. Compared to normoxic culture conditions, 180 genes were up-regulated and 67 genes were down-regulated under hypoxia mimicked by $CoCl_2$ treatment. These differentially expressed genes were involved in mutiple biological functions including development and differentiation, immune and stress response, metabolic process, and cellular physiological response. It was found that hypoxia significantly regulated genes involved in regulation of glycolysis and cell differentiation, as well as intracellular signalling pathways related to Notch and focal adhesion, which are closely associated with tumor malignant growth. These results should facilitate investigation of the role of hypoxia in the glioma development and exploration of therapeutic targets for inhibition of glioma growth.

Expression of Hepatitis B Virus X Protein in Hepatocytes Suppresses CD8+ T Cell Activity

  • Lee, Mi Jin;Jin, Young-hee;Kim, Kyongmin;Choi, Yangkyu;Kim, Hyoung-Chin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.126-134
    • /
    • 2010
  • Background: $CD8^+$ T cells contribute to the clearance of Hepatitis B virus (HBV) infection and an insufficient $CD8^+$ T cell response may be one of the major factors leading to chronic HBV infection. Since the HBx antigen of HBV can up-regulate cellular expression of several immunomodulatory molecules, we hypothesized that HBx expression in hepatocytes might affect $CD8^+$ T cell activity. Methods: We analyzed the activation and apoptosis of $CD8^+$ T cells co-cultured with primary hepatocytes rendered capable of expressing HBx by recombinant baculovirus infection. Results: Expression of HBx in hepatocytes induced low production of $interferon-{\gamma}$ and apoptosis of CD8+ T cells, with no effect on CD8 T cell proliferation. However, transcriptional levels of H-2K, ICAM-1 and PD-1 ligand did not correlate with HBx expression in hepatocytes. Conclusion: Our results suggest that HBx may inhibit $CD8^+$ T cell response by regulation of $interferon-{\gamma}$ production and apoptosis.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.