• Title/Summary/Keyword: Cellular immune response

Search Result 359, Processing Time 0.025 seconds

Differentially Expressed Genes in Marine Medaka Fish (Oryzias javanicus) Exposed to Cadmium

  • Woo, Seon-Ock;Son, Sung-Hee;Park, Hong-Seog;Vulpe, Chris D.;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.293-299
    • /
    • 2008
  • To screen the differentially expressed genes in cadmuim-exposed marine medaka fish (Oryzias javanicus), a candidate marine test fish for ecological toxicity, the differential display polymerase chain reaction (DD-PCR) was carried out, since the genome-wide gene expression data are not available in this fish species yet. A total of 35 clones were isolated from cadmium-exposed fish and their nucleotide sequences were analyzed. The differentially expressed gene candidates were categorized to response to stimulus (3); ion binding (3); DNA binding (1); protein binding (6); carbohydrate binding (1); metabolic process (4); biological regulation (3); cellular process (2); protein synthesis (2); catalytic activity (2); sense of sight (1); immune (1); neurohormone (1); signaling activity (1); electron carrier activity (1) and others (3). For real-time quantitative RT-PCR, we selected catalase, glucose-6-phosphate dehydrogenase, heat shock protein 70, and metallothionein and confirmed that cadmium exposure enhanced induction of these four genes.

Effects of Intraperitoneal Administration of Lactococcus lactis ssp. lactis Cellular Fraction on Immune Response

  • Kim, Ji-Yeon;Lee, Seong-Kyu;Jeong, Do-Won;Hachimura, Satoshi;Kaminogawa, Shuichi;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.405-409
    • /
    • 2005
  • Cellular components of Lactococcus lactis ssp. lactis (heat-killed whole cells, cytoplasm, and cell walls) were tested for their in vivo immunopotentiating activities. Peritoneal macrophages from mice injected intraperitoneally with cell-wall fractions exhibited significantly greater phagocytic activity than groups injected with whole cells or cytoplasm fraction. Cytotoxicity of natural-killer cells was highest in cytoplasm fractions. Production of cytokines (IFN-${\gamma}$, IL-2, IL-6, and IL-12) in spleen cells was significantly higher when cellular components were injected intraperitoneally, and tended to be higher in whole-cell and cytoplasm groups than in cell-wall group. These results demonstrate lactic acid bacteria whole cells and their cytoplasm and cell-wall tractions have immunopotentiating activities.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation

  • Yun, Miyong;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.373-385
    • /
    • 2020
  • Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

Transcriptional activation of an anti-oxidant mouse Pon2 gene by dexamethasone

  • Lim, Ji-Ae;Kim, Sang-Hoon
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.421-426
    • /
    • 2009
  • Glucocorticoids regulate multiple physiological processes such as metabolic homeostasis and immune response. Mouse Pon2 (mPon2) acts as an antioxidant to reduce cellular oxidative stress in cells. In this present study, we investigated the transcriptional regulation of mPon2 by glucocorticoids. In the presence of glucocorticoid analogue dexamethasone, the expression of mPon2 mRNA in cells was increased, whereas the expression was inhibited by a transcription inhibitor actinomycin D. Glucocorticoid receptors bound to the putative glucocorticoid response elements located between -593 bp and -575 bp of the mPon2 promoter. Transcriptional activity was completely blocked when the putative element was mutated. Taken together, these results suggest that the expression of the mPon2 gene is directly regulated by glucocorticoid-glucocorticoid receptor complexes.

Ovarian Tumors in Rbp9 Mutants of Drosophila Induce an Immune Response

  • Kim, Jihyun;Kim, Chun;Kim-Ha, Jeongsil
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.228-232
    • /
    • 2006
  • The Drosophila protein, Rbp9, is homologous to human Hu, which is reported to be involved in small cell lung cancer. Rbp9 functions in cystocyte differentiation, and mutations in Rbp9 cause ovarian tumors. Here we show that the antimicrobial peptide, Attacin, is upregulated in Rbp9 mutants, especially in ovaries where tumors form. Upregulation seems to result from activation of the NF-${\kappa}B$ pathway since we detected nuclear localization of Relish in Rbp9 mutant ovaries but not in wild type ovaries. Inactivation of NF-${\kappa}B$ in the Rbp9 mutant allows prolonged survival of malformed egg chambers. We conclude that Drosophila initiates an anti-tumor defense response via activation of NF-${\kappa}B$.

Differential gene expression by chrysotile in human bronchial epithelial cells

  • Seo, Yoo-Na;Lee, Yong-Jin;Lee, Mi-Young
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • Asbestos exposure has been known to contribute to several lung diseases named asbestosis, malignant mesothelioma and lung cancer, but the disease-related molecular and cellular mechanisms are still largely unknown. To examine the effects of asbestos exposure in human bronchial epithelial cells at gene level, the global gene expression profile was analyzed following chrysotile treatment. The microarray results revealed differential gene expression in response to chrysotile treatment. The genes up- and down-regulated by chrysotile were mainly involved in processes including metabolism, signal transduction, transport, development, transcription, immune response, and other functions. The differential gene expression profiles could provide clues that might be used to understand the pathological mechanisms and therapeutic targets involved in chrysotile-related diseases.

Drosophila melanogaster Is Susceptible to Vibrio cholerae Infection

  • Park, Shin-Young;Heo, Yun-Jeong;Kim, Kun-Soo;Cho, You-Hee
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.409-415
    • /
    • 2005
  • Infection of Drosophila melanogaster adults with 6 Vibrio species revealed that V. cholerae was lethal (100% mortality) within 20 h as a result of systemic infection. Avirulent infection by V. vulnificus restricted the subsequent virulent infection by V. cholerae. The immediate transcription of antimicrobial peptides (AMPs), most notably Attacin A, was delayed in V. cholerae infection compared to V. vulnificus infection. Ectopic expression of Attacin A and Metchnikowin enhanced the survival of D. melanogaster upon V. cholerae infection. These results suggest that AMPs are important in the response to infections by Vibrio species and that the signaling pathways governing their expression may be targeted by V. cholerae virulence factors to elude the innate immunity of Drosophila.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.

The Relationship between the Serum Cytokine and Clinical Improvement in Major Depressive Disorder (주요 우울증에서 혈중 Cytokine과 임상적 호전과의 관계)

  • Kim, Hyon Chul;Lee, Sang Kyu;Kim, Do Hoon;Son, Bong Ki
    • Korean Journal of Biological Psychiatry
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • Object : Currently, the alteration of cytokine system has been known to play an important role in regard to depressive symptom. We focused on the relationship between immunological parameters and clinical improvement in major depressive disorder. Method : Data were collected on 26 patients with major depressive disorder using a 8-week prospective follow-up design. After 8-week treatment period with fluoxetine, patients were classified into a response group and a non-response group according to their psychopathological outcome as evaluated by Hamilton Depression Rating Scale. The differences of the immunological parameters between pre-treatment phase and post-treatment phase were compared among patients. The difference of those was also compared within each phase among them. The relationship between socio-demographic variables, depression, cytokine, mononuclear cells was examined by correlation analysis. Multiple regression analyses were performed to explore the predictors of clinical improvement of major depressive disorder. Result : Pre-treatment levels of IL-$1{\beta}$ in the response group were significantly higher than those in the non-response group. Pre-treatment levels of IL-$1{\beta}$ of all patients and in the response group were positively correlated with pre-treatment monocyte counts. Patients with subsequent remission showed significantly lower IL-6 values at baseline than those with non-response. Post-treatment values of IL-6 did not differ significantly among the patients. The correlation test showed more frequent relations among cytokines and mononuclear cells in the response group than in the non-responder group. Especially, serum level of IL-6 in pre-treatment phase was only significantly correlated with HAMD score after 8-week treatement phase, while other cytokines and mononuclear cells were not. Pretreatment level of IL-6 was of paramount importance in predicting clinical improvement of depressive symptom. Conclusion : The immune system of major depressive disorder patients might dichotomize the patients into subsequent responders and non-responders. Immune system might be of great influence on the clinical improvement of major depressive disorder. The mode of interaction between depression and cellular immune function and the mediators responsible for the cytokine production need to be studied further.

  • PDF