• Title/Summary/Keyword: Cellular and PCS Band

Search Result 24, Processing Time 0.031 seconds

Development of Local-Exposure Systems for In Vivo Studies at Mobile-Phone Frequency Bands (이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발)

  • Ko Chea-Ok;Park Min-Young;Doh Hyeon-Jeong;Kim Jeong-Lan;Jung Ki-Bum;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.451-460
    • /
    • 2006
  • We have designed local exposure systems for long-time mice experiments in PCS and cellular frequency band(PCS: 1,762.5 MHz, cellular: 848.5 MHz). The fabricated systems are local exposure systems of carousel type, and 40 mice can be exposed at a time. In order not to give extra stress to the mice ender experiment, the systems were fabricated to meet the environmental conditions such as illumination, ventilation, noise etc. SAR measurement was performed using a temperature probe. Measurements at 3 points in the head of mouse cadaver and solid phantom were made, and it has been confirmed that the measurement results are in good agreement with the simulation results in the real exposure environment. The exposure systems are currently used for long-term mice experiments.

Design of Power Divider for IMT-Advances System using GaAs Process (GaAs 공정을 이용한 IMT-Advances System용 전력분배기 설계)

  • Kim, Chang-Gi;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.184-184
    • /
    • 2008
  • In this paper, a power divider with a multi-band and broadband are designed and fabricated using an InGaP/GaAs process. The design of this divider is based on multi-band because it is important in the next generation IMT-Advances system. In this design, power divider is fabricated with the frequency of 824 MHz to 894 MHz, 1.8 GHz to 2.2 GHz and 2.3 GHz to 2.4 GH for cellular, personal communication system (PCS) and Wireless Broadband Internet (WiBro). The topology of the designed power divider is based on the multi-section and fabricated using integrated passive device (IPD) library of nanoENS Inc. It is measured using network analyzer.

  • PDF

A Study on Characteristics of Triple-band Plastic Chip Antenna for Mobile Terminal using Foamex Materials (Formax 매질을 이용한 이동통신 단말기용 삼중대역 플라스틱 칩 안테나에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2210-2216
    • /
    • 2007
  • In this paper, triple-band plastic chip antennas for mobile terminal are investigated. Plastic chip antenna is composed of Foamex material with circle of PVC(Polyvilyl chloride). For its electric characteristics, the dielectric constant is 1.9, the insulation intensity is 112KV/cm. Plastic chip antennas are don't tend to break easily against to external shock, have more gain and efficiency than ceramic chip antennas. Triple-band plastic chip antennas of four type are implemented and experimented. From the experiments results, the antenna resonate at the triple-band, the gain of the antennas has about above -2dB, the pattern is ommidirectional the same as the conventional antennas. So, the antennas realized with Foamex material will be application for mobile phone antenna operated at the triple band which is cellular band and Korea-PCS band and ISM band or the antenna for other wireless communication system.

Isolation Enhancement of Internal MIMO Antenna

  • Jung, Pil Hyun;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we proposed and evaluated the performance of an internal MIMO (Multiple Input Multiple Output) antenna for multiband operations including LTE (Long Term Evolution) 700/2300/2500. And to enhance the isolation characteristic, a parasitic element is designed and applied. The proposed single antenna has a volume of $60mm(W){\times}38mm(L)$, and the ground plane is $60mm(W){\times}100mm(L)$. The parasitic element used for enhancing the isolation of the antenna was designed with a copper on FR4 sized $60mm(W){\times}20mm(L){\times}1.6mm(H)$, and the pattern size is $60mm(W){\times}15mm(L)$. Simulated and measured results showed that LTE 700/2300/2500, DCS (Digital Cellular Service: 1710-1880MHz), K-PCS (Korea-Personal Communication Service: 1750-1870MHz), US-PCS (US-Personal Communication Service: 1850-1990MHz), WCDMA (Wideband Code Division Multiple Access: 1920-2170MHz), Wibro (2300-2390MHz), Bluetooth (2400-2483MHz), WLAN (Wireless Local Area Network: 2400-2483.5MHz), US-WiMAX (US-World interoperability for Microwave Access: 2400-2590MHz) frequency bands were covered with $S_{11}$ values less than -6dB (VSWR < 3). Simulated and measured results on $S_{21}$ at 730MHz for the firstly designed MIMO antenna showed -5.50dB and -5.65dB, respectively. When with the parasitic element at the separated ground plane to enhance the isolation performance, -10.33dB and -12.90dB are obtained for the simulation and measurement, so the enhanced isolation performance at lower frequency band (617-867MHz) is confirmed.