• Title/Summary/Keyword: Cellular activation

Search Result 1,033, Processing Time 0.018 seconds

Expressions of Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-2 with Changes of Interleukin-6 and Interleukin-18 in Atherosclerotic Lesions of Hypercholesterolemic Rabbits (고콜레스테롤혈증 가토의 죽상경화성 병변에서 Interleukin-6와 Interleukin-18의 변화 및 Matrix Metalloproteinase-9과 Tissue Inhibitor of Metalloproteinase-2의 발현)

  • 권영무;김성숙;장봉현
    • Journal of Chest Surgery
    • /
    • v.35 no.6
    • /
    • pp.407-419
    • /
    • 2002
  • Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by progressive accumulation of lipids, cells, and extracellular matrix. Matrix metalloproteinases(MMPs) and tissue inhibitor of metalloproteinases(TIMPS) contribute to vascular matrix remodeling in atherosclerosis, and some cytokines may play role in the synthesis or activation of MMPs or TIMPs. Material and Method: We produced experimental atherosclerotic plaques in 9 rabbits by atherogenic hypercholesterol diet for 12 weeks, and 10 other rabbits were used as control group with standard laboratory chow, At that time, 19 rabbits were sacrificed and aorta, coronary arteries and blood specimens were prepared. The expressions of MMP-9, TIMP-2 and interleukin(IL)-18, and the bioactivity of IL-6 were investigated with H&E stain, immunohistochemical stain, immunoblotting(Western blot analysis), and bioassay. Result: Serum cholesterol in the experimental group increased up to 1258$\pm$262 mg/dL(control group: 41$\pm$7 mg/dL). All experimental group showed well-developed atherosclerotic plaques in aorta and coronary artery. The expression of MMP-9 in aorta and coronary artery of the experimental group showed significant increase than that of the control group by immunohistochemistry. Among the experimental group, complicated lesions with intimal rupture or complete luminal occlusion, demonstrated stronger expression of MMP-9. Interestingly, there was no difference in expression of TIMP-2 between the experimental and the control group. These findings were confirmed by Western blot analysis. The bioassay revealed significant up-regulation of serum bioactivity of IL-6 in the experimental group(4819.60$\pm$2021.25 IU/$m\ell$) compared to that of IL-6 in the control group(27.20 $\pm$ 12.19 IU/$m\ell$). IL-18 was expressed in all atherosclerotic plaques, whereas little or no expression was detected in the control group. Conclusion: The increased MMP-9 expression along with the unchanged TIMP-2 expression seem to be contributory factors in extracellular matrix degradation in atherosclerosis. Focal overexpression of MMP-9 may promote plaque destabilization and cause complications of atherosclerotic plaques such as thrombosis with/without acute coronary syndrome. Elevation of IL-6 and IL-18 may be more than just markers of atherosclerosis but actual participants in lesion development. Identification of critical regulatory pathway is important to improve the understanding of the cellular and molecular basis of atherosclerosis and may open the way for novel therapeutic strategies.

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

Measuring Intracellular Mycobacterial Killing Using a Human Whole Blood Assay (인체 전혈 모델을 이용한 세포내 결핵균 살균력에 관한 연구)

  • Cheon, Seon-Hee;Song, Ho-Yeon;Lee, Eun-Hee;Oh, Hee-Jung;Kang, In-Sook;Cho, Ji-Yoon;Hong, Young-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.497-509
    • /
    • 2002
  • Background : The mechanisms through which cellular activation results in intracellular mycobacterial killing is only partially understood. However, in vitro studies of human immunity to Mycobacterium tuberculosis have been largely modeled on the work reported by Crowle, which is complicated by several factors. The whole blood culture is simple and allows the simultaneous analysis of the relationship between bacterial killing and the effect of effector cells and humoral factors. In this study, we attempted to determine the extent to which M. tuberculosis is killed in a human whole blood culture and to explore the role of the host and microbial factor in this process. Methods : The PPD positive subject were compared to the umbilical cord blood and patients with tuberculosis, diabetes and lung cancer. The culture is performed using heparinized whole blood diluted with a culture medium and infected with a low number of M. avium or M. tuberculosis $H_{37}Ra$ for 4 days by rotating the culture in a $37^{\circ}C$, 5% $CO_2$ incubator. In some experiments, methlprednisolone- or pentoxifyline were used to inhibit the immune response. To assess the role of the T-cell subsets, CD4+, CD8+ T-cells or both were removed from the blood using magnetic beads. The ${\Delta}$ log killing ratio was defined using a CFU assay as the difference in the log number of viable organisms in the completed culture compared to the inoculum. Results : 1. A trend was noted toward the improved killing of mycobacteria in PPD+ subjects comparing to the umbilical cord blood but there was no specific difference in the patients with tuberculosis, diabetes and lung cancer. 2. Methylprednisolone and pentoxifyline adversely affected the killing in the PPD+ subjects umbilical cord blood and patients with tuberculosis. 3. The deletion of CD4+ or CD8+ T-lymphocytes adversely affected the killing of M. avium and M. tuberculosis $H_{37}Ra$ by PPD+ subjects. Deletion of both cell types had an additive effect, particularly in M. tuberculosis $H_{37}Ra$. 4. A significantly improved mycobacterial killing was noted after chemotherapy in patients with tuberculosis and the ${\Delta}$ logKR continuously decreased in a 3 and 4 days of whole blood culture. Conclusion : The in vitro bactericidal assay by human whole blood culture model was settled using a CFU assay. However, the host immunity to M. tuberculosis was not apparent in the human whole blood culture bactericidal assay, and patients with tuberculosis showed markedly improved bacterial killing after anti-tuberculous chemotherapy compared to before. The simplicity of a whole blood culture facilitates its inclusion in a clinical trial and it may have a potential role as a surrogate marker in a TB vaccine trial.