• Title/Summary/Keyword: Cellular Uptake

Search Result 277, Processing Time 0.035 seconds

Synthesis and In vitro Evaluation of 99mTc-diglucosediethylenetriamine (DGTA) as a Potential Tumor Imaging Agent

  • Lee, Sang-Ju;Oh, Seung-Jun;Kim, Jung-Young;Ryu, Jin-Sook;Kim, Seog-Young;Moon, Dae-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2410-2412
    • /
    • 2011
  • Using a single step chemical synthesis, we synthesized the potential tumor imaging agent $^{99m}Tc$-diglucose-diethylenetriamine (DGTA) from diethylenetriamine and natural D-glucose. 10 min Incubation of 10 mg of precursor with 50 ${\mu}g$ of $SnCl_2{\cdot}2H_2O$ at room temperature yielded over 95% of $^{99m}Tc$ labeling. The stability for 6 hours in saline or human plasma was over 90%. In vitro tumor cell uptake assays using the SNU-C5 and 9 L cell lines showed that, in 0-400 mg/dL glucose medium, cell uptake of $^{99m}Tc$-DGTA was 1.5-8 times higher than that of [$^{18}F$]FDG. Moreover, [$^{18}F$]FDG uptake was dependent on glucose concentration in the medium, whereas cellular uptake of $^{99m}Tc$-DGTA was not dependent on glucose concentration, suggesting that the two compounds have different uptake mechanisms by tumor cells.

Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells

  • Wang, Chun-Hua;Shyu, Rong-Yaun;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Lin, Yi-Yin;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.562-574
    • /
    • 2018
  • The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

Iron Uptake by the Recombinant Yeasts Producing Ferritin Heteropolymers (재조합 효모에 의한 Ferritin 이형집합체의 발현과 철 흡수)

  • Chang Yu Jung;Park Chung Ung;Kim Kyung Suk
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.352-357
    • /
    • 2004
  • Human ferritin H- and L-chain genes (hfH and hfL) were cloned into the yeast shuttle vector YEp352 containing the GAL1 (galactokinase) and GAL10 (epimerase) divergent promoters and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. SDS-PAGE displayed expression of the introduced hfH and hfL in both recombinant strains of Y1H10L and Y1L10H. The ferritin subunits, that represented ca. $22\%$ and $15\%$ of the soluble proteins in Y1H10L and Y1L10H, were spontaneously assembled into active ferritin heteropolymers. The H subunit content of the purified recombinant human ferritin heteropolymers was proven to reflect the relative expression yield of the subunits. When the cells of 2d culture were incubated with 14.3 mM Fe(2), the cellular iron concentration of Y1H10L and Y1L10H was 1.7 and 2.0 times, respectively, that of the control strain. It is assumed that increase in the iron uptake of the recombinant yeasts is closely related to ferritin expression and H subunit content.

The Inhibitory Effect of Rivastigmine and Galantamine on Choline Transport in Brain Capillary Endothelial Cells

  • Lee, Na-Young;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The blood-brain barrier (BBB) transport of acetylcholinesterase (AChE) inhibitors, donepezil and tacrine suggested to be mediated by choline transport system in our previous study. Therefore, in the present study, we investigated the interaction of other AChE inhibitors, rivastigmine and galantamine with choline transporter at the BBB. The effects of rivastigmine and galantamine on the transport of choline by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells) were characterized by cellular uptake study using radiolabeled choline. The uptake of [$^3H$]choline was inhibited by rivastigmine and galantamine, with $IC_{50}$ values (i.e. concentration necessary for 50% inhibition) for 1.13 and 1.15 mM, respectively. Rivastigmine inhibited the uptake of [$^3H$]choline competitively with $K_i$ of 1.01 mM, but galantamine inhibited noncompetitively. In addition, the efflux of [$^3H$]choline was significantly inhibited by rivastigmine and galantamine. Our results indicated that the BBB choline transporter may be involved in a part of the influx and efflux transport of rivastigmine across the BBB. These findings should be therapeutically relevant to the treatment of Alzheimer's disease (AD) with AChE inhibitors, and, more generally, to the BBB transport of CNS-acting cationic drugs via choline transporter.

Calumenin Interacts with SERCA2 in Rat Cardiac Sarcoplasmic Reticulum

  • Sahoo, Sanjaya Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Calumenin, a multiple EF-hand $Ca^{2+}$ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on $Ca^{2+}$ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of $Ca^{2+}$ transients. Among them, prolongation of time to 50% baseline ($T_{50}$) was the most outstanding change in electrically-evoked $Ca^{2+}$ transients. The higher $T_{50}$ was due to an inhibition of SERCA2-mediated $Ca^{2+}$ uptake into SR, as tested by oxalate-supported $Ca^{2+}$ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of $Ca^{2+}$ uptake during the EC coupling process.

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

  • Wu, Yunfei;Yang, Wenzhu;Wei, Jinhuan;Yoon, Hyeryung;An, Gynheung
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.178-185
    • /
    • 2017
  • Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

Aucklandia lappa Causes Membrane Permeation of Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1827-1834
    • /
    • 2020
  • Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-β-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40℃ compared to that at 35℃. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-β-D-glucan and chitin.

Uptake of Lead by the Lead-tolerant Bacteria (Pb ion내성균(耐性菌)에 의한 Pb의 균체내(菌體內) 축적(蓄積)에 관(關)하여)

  • Hong, Soon Duck;Kim, In Seok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.47-53
    • /
    • 1983
  • A strain of Alcaligenes sp. Isolated from the sludge of industrial area was found to uptake 24.1 mg lead/g dried cell during incubation in medium containing 100g/ml of lead. Analyses of cellular subfractions reveal that fractions of cell wall contain 88.6 percent of lead found associated with the cells and the remainder is found associated with the cytoplasmic fraction. Ultrastructural examination of the cells cultured in media containing 500 and 1000g/ml of lead showed no major irregularities between cells of the treated and untreated cultures.

  • PDF

Improved modeling of non-hepatic cellular uptake and degradation of low density lipoprotein

  • Im, Gwang-Hui;Lee, Eun-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.524-527
    • /
    • 2002
  • An improved mathematical/kinetic model is proposed to describe receptor-mediated uptake and its degradation of LDL on human fibroblasts. The hierarchy of kinetic models is presented, which leads to the model introducing the parameter of degree of preferential insertion of recy치ed receptors to the surface of cell membrane. The results of its prediction were presented in various types of experimental and in various LDL concentrations. Its ability to predict Brown and Goldstein’s ample experimental data was excellent.

  • PDF

Preparation and Characterization of Folic Acid Linked Poly(L-glutamate) Nanoparticles for Cancer Targeting

  • Lee Yong-Kyu
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.387-393
    • /
    • 2006
  • Nanoparticles of Poly(L-glutamic acid) (PG) conjugated to the anticancer drug paclitaxel and targeted moiety folic acid (FA) were synthesized and characterized in vitro. The nanoparticles were designed to take advantage of FA targeting to folate receptor (FR) positive cancer cells. The chemical composition of the conjugate was characterized by $^1H-NMR$, FTIR and UV/vis spectroscopy. The selective cytotoxicity of the FA-PG-paclitaxel conjugates was evaluated in FR positive cancer cells. The interaction of the conjugate was visualized by fluorescence microscopy with results confirming the successful preparation of the conjugate and the production of nanoparticles of about 200-300 nm in diameter. The amount of paclitaxel conjugated to FA-PG was 25% by weight. Cellular uptake of the conjugate was FA dependent, and the conjugate uptake was mediated specifically by the folate receptor. These results demonstrate the improved selective toxicity and effective delivery of an anticancer drug into FR bearing cells in vitro.