• Title/Summary/Keyword: Cellular Space

Search Result 211, Processing Time 0.022 seconds

Analysis of the soft handoff rate in DS-CDMA cellular systems (DS-CDMA 셀룰라 시스쳄에서의 소프트 핸드오프율에 대한 분석)

  • 조무호;김광식;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1659-1667
    • /
    • 1997
  • In DS-CDMA cellular systems, using the same frequency channel at the adjacent cells simultaneously makes soft handoff possible. In soft handoff, mobiles use multiple radio resources for the space diversity of signal in the overlapped region. The previous traffic models of hard handoff are not applicable to the system with soft handoff due to switching radio channels in that region. The handoff rate can be calculated by the mobility of mobiles, which is a function of the size and shape of a cell, and the speed and density of the mobiles. In this paper, we propose an analytical traffic model to study the soft handoff rate. We assume that the system uses a two-way handoff scheme for practical purposes, which connects only two cells to a mobile during soft handoff. We performed a computer simulation to confirm the accuracy of the proposed soft handoff model. The simulation results show good agreement with the analytical model.

  • PDF

Impacts of Mobile Communications on the Space (휴대전화의 이용으로 인한 개인의 공간인식과 행태의 변화)

  • Hwang, Joo-Seong;Yoo, Ji-Yeon;Lee, Dong-Hoo
    • Korean journal of communication and information
    • /
    • v.34
    • /
    • pp.306-340
    • /
    • 2006
  • Mobile communications is argued to reshape and activate the existing space by increasing 'mobile communicability en route' and 'real time interaction.' This study is designed to make an empirical analysis on how different the use of a cellular phone is in each different space. In this study, the space is divided into three distinct parts including the private, social and public space. First, spatial micro-coordination and experience of polysemy of place are widely observed in the use of a mobile phone in the private space. Secondly, it is found that a mobile phone contributes to extending the scope of social contacts which in turn compliments the existing social relationship. Moreover, a full-time intimate community that is connected via a mobile phone results in reshaping the social space. Lastly, the study shows that the usage pattern of a mobile phone varies depending on the type of public space. The technological development is envisaged to lead to more demand for the public space while facilitating the use of the public space.

  • PDF

Design of Extendable BCD-EXCESS 3 Code Convertor Using Quantum-Dot Cellular Automata (확장성을 고려한 QCA BCD-3초과 코드 변환기 설계)

  • You, Young-won;Jeon, Jun-cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Quantum-dot cellular automata (QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Typical BCD-EXCESS 3 code converters using QCA have not considered the scalability so that the architectures are not suitable for a large scale circuit design. Thus, we design a BCD-EXCESS 3 code converter with scalability using QCADesigner and verify the effectiveness by simulation. Our structure have reduced 32 gates and 7% of garbage space rate compare with typical URG BCD-EXCESS 3 code converter. Also, 1 clock is only needed for circuit expansion of our structure though typical QCA BCD-EXCESS 3 code converter demands 7 clocks.

Design of cellular, satellite, and integrated systems for 5G and beyond

  • Kim, Junhyeong;Casati, Guido;Cassiau, Nicolas;Pietrabissa, Antonio;Giuseppi, Alessandro;Yan, Dong;Strinati, Emilio Calvanese;Thary, Marjorie;He, Danping;Guan, Ke;Chung, Heesang;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.669-685
    • /
    • 2020
  • 5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR) is a Korea-Europe (KR-EU) collaborative project for developing multi-connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter-wave 5G New Radio (NR)-based cellular system, an investigation of the feasibility of an NR-based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR-EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next-generation communications.

Analysis of Pseudorandom Sequences Generated by Maximum Length Complemented Cellular Automata (최대길이 여원 CA 기반의 의사랜덤수열 분석)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.1001-1008
    • /
    • 2019
  • A high-quality pseudorandom sequence generation is an important part of many cryptographic applications, including encryption protocols. Therefore, a pseudorandom number generator (PRNG) is an essential element for generating key sequences in a cryptosystem. A PRNG must effectively generate a large, high-quality random data stream. It is well known that the bitstreams output by the CA-based PRNG are more random than the bitstreams output by the LFSR-based PRNG. In this paper, we prove that the complemented CA derived from 90/150 maximum length cellular automata(MLCA) is a MLCA to design a PRNG that can generate more secure bitstreams and extend the key space in a secret key cryptosystem. Also we give a method for calculating the cell positions outputting a nonlinear sequence with maximum period in complemented MLCA derived from a 90/150 MLCA and a complement vector.

Development of Two-lane Highway Vehicle Model Based on Discrete Time and Space (이산적 시공간 기반 2차로 도로 차량모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.785-791
    • /
    • 2011
  • Two-lane and two-way traffic flow shows various dynamic relationships according to the behaviors of low-speed vehicle and overtaking. And it is essential to develop a vehicle model which simultaneously explains the behaviors of low-speed vehicle and overtaking using opposite lane in order to microscopically analyze various two-lane and two-way traffic flows by traffic flow simulation. In Korea, some studies for car-following and lane-changing models for freeway or signalized road have been reported, but few researches for the development of vehicle model for two-lane and two-way highway have been done. Hence, a microscopic two-lane and two-way vehicle model was, in this study, developed with the consideration of overtaking process and is based on CA (Cellular Automata) which is one of discrete time-space models. The developed model is parallel combined with an adjusted CA car-following model and an overtaking model. The results of experimental simulation showed that the car-following model explained the various macroscopic relationships of traffic flow and overtaking model reasonably generated the various behaviors of macroscopic traffic flows under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking. The vehicle model presented in this study is expected to be used for the simulation of more various two-lane, two-way traffic flows.

Isoforms, structures, and functions of versatile spectraplakin MACF1

  • Hu, Lifang;Su, Peihong;Li, Runzhi;Yin, Chong;Zhang, Yan;Shang, Peng;Yang, Tuanmin;Qian, Airong
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44]

Real-time load monitoring system based mobile (무선 기반의 실시간 부하 모니터링 시스템)

  • Park, Hong-Jin
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1095-1100
    • /
    • 2004
  • The computer system is gradually complicated because of explosive growth of computer system and IT technology. For efficient management of complicated system, system load monitoring technology is essential. In this paper, we is implemented the real-time load monitoring system based mobile than the traditional methods that are used load-related commands in system manager or specific load application programs based connected wire. Advantage of implemented load monitoring system in this paper is freely saw load information in time and space though mobile method like as PDA, cellular phone, more than traditional methods intime and space.

  • PDF

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

A Study on the Characteristics of Topological Invariant Expression in the Space of Digital Architecture (디지털건축공간에 나타난 위상기하학적 불변항의 표현특성에 관한 연구)

  • Bae Kang-Won;Park Chan-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.64-72
    • /
    • 2005
  • The purpose of this study is to propose a topological design principles and to analyze the space of digital architecture applying topological invariant expressive characteristics. As this study is based on topology as a science of true world's pattern, we intented to explain the concepts and provide some methods of low-level and hyperspace topological invariant Properties. Four major aspects are discussed. Those are connection theory, boundary concept, homotopy group, knot Pattern theory as topological invariant properties. Then we intented to make understand topological characteristics of the Algorithms, luring machine, cellular automata, string theory, membrane, DNA and supramolecular chemistry. In fine, the topological invariant properties of the digital architecture as genetic algorithms based on self-organization and heterogeneous networks of interacting actors can be analyzed and used as a critical tool. Therefore topology can be provided endless possibilities for architecture, designers and scientists intended in expressing the more complex and organic patterns of nature as life.