• Title/Summary/Keyword: Cellular Networks

Search Result 644, Processing Time 0.025 seconds

A Two-Step Call Admission Control Scheme using Priority Queue in Cellular Networks (셀룰러 이동망에서의 우선순위 큐 기반의 2단계 호 수락 제어 기법)

  • 김명일;김성조
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.461-473
    • /
    • 2003
  • Multimedia applications are much more sensitive to QoS(Quality of Service) than text based ones due to their data continuity. In order to provide a fast moving MH(Mobil Host) using multimedia application with a consistent QoS,an efficient call admission mechanism is in need. This paper proposes the 2SCA(2-Step Call Admission) scheme based on cal admission scheme using pripority to guarantee the consistent QoS for mobile multimedia applications. A calls of MH are classified new calls, hand-off calls, and QoS upgrading calls. The 2SCA is composed of the basic call admission and advanced call admission; the former determines the call admission based on bandwidth available in each cell and the latter determines the call admission by applying DTT(Delay Tolerance Time), PQeueu(Priority Queue), and UpQueue(Upgrade Queue) algorithm according to the type of each call blocked at the basic call admission stage. In order to evaluate the performance of our mechanism, we measure the metrics such as the dropping probability of new calls, dropping probability of hand-off calls, and bandwidth utilization. The result shows that the performance of our mechanism is superior to that of existing mechanisms such as CSP(Complete Sharing Policy), GCP(Guard Channel Policy) and AGCP(Adaptive Guard Channel Policy).

Gene signature for prediction of radiosensitivity in human papillomavirus-negative head and neck squamous cell carcinoma

  • Kim, Su Il;Kang, Jeong Wook;Noh, Joo Kyung;Jung, Hae Rim;Lee, Young Chan;Lee, Jung Woo;Kong, Moonkyoo;Eun, Young-Gyu
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • Purpose: The probability of recurrence of cancer after adjuvant or definitive radiotherapy in patients with human papillomavirus-negative (HPV(-)) head and neck squamous cell carcinoma (HNSCC) varies for each patient. This study aimed to identify and validate radiation sensitivity signature (RSS) of patients with HPV(-) HNSCC to predict the recurrence of cancer after radiotherapy. Materials and Methods: Clonogenic survival assays were performed to assess radiosensitivity in 14 HNSCC cell lines. We identified genes closely correlated with radiosensitivity and validated them in The Cancer Genome Atlas (TCGA) cohort. The validated RSS were analyzed by ingenuity pathway analysis (IPA) to identify canonical pathways, upstream regulators, diseases and functions, and gene networks related to radiosensitive genes in HPV(-) HNSCC. Results: The survival fraction of 14 HNSCC cell lines after exposure to 2 Gy of radiation ranged from 48% to 72%. Six genes were positively correlated and 35 genes were negatively correlated with radioresistance, respectively. RSS was validated in the HPV(-) TCGA HNSCC cohort (n = 203), and recurrence-free survival (RFS) rate was found to be significantly lower in the radioresistant group than in the radiosensitive group (p = 0.035). Cell death and survival, cell-to-cell signaling, and cellular movement were significantly enriched in RSS, and RSSs were highly correlated with each other. Conclusion: We derived a HPV(-) HNSCC-specific RSS and validated it in an independent cohort. The outcome of adjuvant or definitive radiotherapy in HPV(-) patients with HNSCC can be predicted by analyzing their RSS, which might help in establishing a personalized therapeutic plan.

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.

A New Dual Connective Network Resource Allocation Scheme Using Two Bargaining Solution (이중 협상 해법을 이용한 새로운 다중 접속 네트워크에서 자원 할당 기법)

  • Chon, Woo Sun;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.8
    • /
    • pp.215-222
    • /
    • 2021
  • In order to alleviate the limited resource problem and interference problem in cellular networks, the dual connectivity technology has been introduced with the cooperation of small cell base stations. In this paper, we design a new efficient and fair resource allocation scheme for the dual connectivity technology. Based on two different bargaining solutions - Generalizing Tempered Aspiration bargaining solution and Gupta and Livne bargaining solution, we develop a two-stage radio resource allocation method. At the first stage, radio resource is divided into two groups, such as real-time and non-real-time data services, by using the Generalizing Tempered Aspiration bargaining solution. At the second stage, the minimum request processing speeds for users in both groups are guaranteed by using the Gupta and Livne bargaining solution. These two-step approach can allocate the 5G radio resource sequentially while maximizing the network system performance. Finally, the performance evaluation confirms that the proposed scheme can get a better performance than other existing protocols in terms of overall system throughput, fairness, and communication failure rate according to an increase in service requests.