• Title/Summary/Keyword: Cellular Networks

Search Result 644, Processing Time 0.037 seconds

A Study on the Number Recognition using Cellular Neural Network (Cellular Neural Network을 이용한 숫자인식에 관한 연구)

  • 전흥우;김명관;정금섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.819-826
    • /
    • 2002
  • Cellular neural networks(CNN) are neural networks that have locally connected characteristics and real-time image processing. Locally connected characteristics are suitable for VLSI implementation. It also has applications in such areas as image processing and pattern recognition. In this thesis cellular neural networks are used for feature detection in number recognition at the stage of re-processing. The four or six directional shadow detectors are used in numbers recognition. At the stage of classification, this result of feature detection was simulated by using a multi-layer back Propagation neural network. The experiments indicate that the CNN feature detectors capture good features for number recognition tasks.

Transmission Power Minimization with Network Coding for Mobile Terminals in Cellular Relay Networks

  • Du, Guanyao;Xiong, Ke;Li, Dandan;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2098-2117
    • /
    • 2012
  • This paper jointly investigates the bandwidth allocation, transmission strategy and relay positions for two-way transmission aware cellular networks with network coding (NC). Our goal is to minimize the transmission power of mobile terminals (MTs). Consider a cellular system, where multiple MTs exchange information with their common base station, firstly, we propose an efficient bandwidth allocation method and then give a transmission strategy for each MT to determine whether to use relay stations (RSs) for its two-way transmission with the BS or not. To further improve the system performance, the optimal positions of RSs are also jointly discussed. A GA-based algorithm is presented to obtain the optimum positions for RSs. Besides, the impacts of frequency reuse on MT's transmission power and system spectral efficiency (SE) under different number of relays are also discussed in our work. Numerical results show that the proposed NC aware scheme can extend MTs' battery life at least 6% more than traditional method.

ARCA-An Adaptive Routing Protocol for Converged Ad-Hoc and Cellular Networks

  • Wu, Yumin;Yang, Kun;Chen, Hsiao-Hwa
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.422-431
    • /
    • 2006
  • This paper proposes an adaptive routing protocol called ARCA for converged ad-hoc and cellular network (CACN). Due to the limitation of both bandwidth and transmission range in a cell, a mobile host (MH) may not be able to make a call during busy time. CACN offers a flexible traffic diversion mechanism that allows a MH to use the bandwidth in another cell to ease the congestion problem and increase the throughput in a cellular network. Based on the presentation of CACN's physical characteristics, the paper details the design issues and operation of the adaptive routing protocol for CACN (ARCA). Detailed numerical analysis is presented in terms of both route request rejection rate and routing overhead, which, along with the simulation results, have indicated the effectiveness and efficiency of the ARCA protocol.

Cell Association Scheme for Uplink Heterogeneous Cellular Networks (이기종 셀룰러 네트워크에서의 상향 링크 셀 접속 기법)

  • Lee, Hyung Yeol;Sang, Young Jin;Park, Jin Bae;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.393-400
    • /
    • 2013
  • In conventional single-tier networks, downlink based association is the best association scheme for the uplink association because all macro base stations have the same physical specification. However, in uplink heterogeneous cellular networks, a downlink based cell association cannot be the best for uplink any more because of the difference of physical specification between the different base station. In this paper, we will propose a uplink based cell association scheme, and devise performance metric for describing a uplink performance in heterogeneous cellular networks. Then, we will discuss the necessity of the uplink based association by observing outage probability, delay constraint outage probability, delay constraint outage capacity.

Enhancing Performance of Multicast over Push-to-Talk over Cellular (PoC 멀티캐스트 성능향상 방안)

  • Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1602-1608
    • /
    • 2013
  • PoC (Push-to-Talk over Cellular) provides one-to-one as well as one-to-many communications with VoIP technology based on SIP over cellular networks. According to above property, PoC is considered as perscrptive technology for public protection for disaster relief networks. For this networks, group communication is the essential function. However, since current standardization process takes into general scenarios account without any consideration for mentioned networks, it have some problems in the point of adaptability. To solve above problem, in this paper, we propose how to reduce the overhead on the PoC server to reduce the transmission delay. Simulation results are shown to evaluate the improved performance.

A Study of Fronthaul Networks in CRANs - Requirements and Recent Advancements

  • Waqar, Muhammad;Kim, Ajung;Cho, Peter K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4618-4639
    • /
    • 2018
  • One of the most innovative paradigms for the next-generation of wireless cellular networks is the cloud-radio access networks (C-RANs). In C-RANs, base station functions are distributed between the remote radio heads (RHHs) and base band unit (BBU) pool, and a communication link is defined between them which is referred as the fronthaul. This leveraging link is expected to reduce the CAPEX (capital expenditure) and OPEX (operating expense) of envisioned cellular architectures as well as improves the spectral and energy efficiencies, provides the high scalability, and efficient mobility management capabilities. The fronthaul link carries the baseband signals between the RRHs and BBU pool using the digital radio over fiber (RoF) based common public radio interface (CPRI). CPRI based optical links imposed stringent synchronization, latency and throughput requirements on the fronthaul. As a result, fronthaul becomes a hinder in commercial deployments of C-RANs and is seen as one of a major bottleneck for backbone networks. The optimization of fronthaul is still a challenging issue and requires further exploration at industrial and academic levels. This paper comprehensively summarized the current challenges and requirements of fronthaul networks, and discusses the recently proposed system architectures, virtualization techniques, key transport technologies and compression schemes to carry the time-sensitive traffic in fronthaul networks.

Determination of Optimal Cell Capacity for Initial Cell Planning in Wireless Cellular Networks

  • Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • In wireless cellular networks, previous researches on admission control policies and resource allocation algorithm considered the QoS (Quality of Service) in terms of CDP (Call Dropping Probability) and CBP (Call Blocking Probability). However, since the QoS was considered only within a predetermined cell capacity, the results indicated a serious overload problem of systems not guaranteeing both CDP and CBP constraints, especially in the hotspot cell. That is why a close interrelationship between CDP, CBP and cell capacity exists. Thus, it is indispensable to consider optimal cell capacity guaranteeing multiple QoS (CDP and CBP) at the time of initial cell planning for networks deployment. In this paper, we will suggest a distributed determination scheme of optimal cell capacity guaranteeing both CDP and CBP from a long-term perspective for initial cell planning. The cell-provisioning scheme is performed by using both the two-dimensional continuous-time Markov chain and an iterative method called the Gauss-Seidel method. Finally, numerical and simulation results will demonstrate that our scheme successfully determines an optimal cell capacity guaranteeing both CDP and CBP constraints for initial cell planning.

Mobile-Based Relay Selection Schemes for Multi-Hop Cellular Networks

  • Zhang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Multi-hop cellular networks (MCNs), which reduce the transmit power, mitigate the inter-cell interference, and improve the system performance, have been widely studied nowadays. The relay selection scheme is a key technique that achieves these advantages, and inappropriate relay selection causes frequent relay switchings, which deteriorates the overall performance. In this study, we analyze the conditions for relay switching in MCNs and obtain the expressions for the relay switching rate and relay activation time. Two mobile-based relay selection schemes are proposed on the basis of this analysis. These schemes select the relay node with the longest relay activation time and minimal relay switching rate through mobility prediction of the mobile node requiring relay and available relay nodes. We compare the system performances via simulation and analyze the impact of various parameters on the system performance. The results show that the two proposed schemes can obtain a lower relay switching rate and longer relay activation time when there is no reduction in the system throughput as compared with the existing schemes.

Dynamic Cell Reconfiguration Framework for Energy Conservation in Cellular Wireless Networks

  • Son, Kyuho;Guruprasad, Ranjini;Nagaraj, Santosh;Sarkar, Mahasweta;Dey, Sujit
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.567-579
    • /
    • 2016
  • Several energy saving techniques in cellular wireless networks such as active base station (BS) selection, transmit power budget adaptation and user association have been studied independently or only part of these aspects have been considered together in literature. In this paper, we jointly tackle these three problems and propose an integrated framework, called dynamic cell reconfiguration (DCR). It manages three techniques operating on different time scales for ultimate energy conservation while guaranteeing the quality of service (QoS) level of users. Extensive simulations under various configurations, including the real dataset of BS topology and utilization, demonstrate that the proposed DCR can achieve the performance close to an optimal exhaustive search. Compared to the conventional static scheme where all BSs are always turned on with their maximum transmit powers, DCR can significantly reduce energy consumption, e.g., more than 30% and 50% savings in uniform and non-uniform traffic distribution, respectively.

Modeling and cost analysis of zone-based registration in mobile cellular networks

  • Jung, Jihee;Baek, Jang Hyun
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.736-744
    • /
    • 2018
  • This study considers zone-based registration (ZBR), which is adopted by most mobile cellular networks. In ZBR, a user equipment (UE) registers its location area (or zone) in a network database (DB) whenever it enters a new zone. Even though ZBR is implemented in most networks for a UE to keep only one zone (1ZR), it is also possible for a UE to keep multiple zones. Therefore, a ZBR with two zones (2ZR) is investigated, and some mathematical models for 2ZR are presented. With respect to ZBR with three zones (3ZR), several studies have been reported, but these employed computer simulations owing to the complexity of the cases, and there have been no reports on a mathematical 3ZR model to analyze its performance. In this study, we propose a new mathematical model for 3ZR for the first time, and analyze the performance of 3ZR using this model. The numerical results for various scenarios show that, as the UE frequently enters zones, the proposed 3ZR model outperforms 1ZR and 2ZR. Our results help determine the optimal number of zones that a UE keeps, and minimize the signaling cost for radio channels in mobile cellular networks.