• Title/Summary/Keyword: Cellular Femto Systems

Search Result 4, Processing Time 0.024 seconds

Distributed Subchannel ON/OFF Scheduling by using Load Distribution for Cellular Femto Systems (셀룰러 펨토 시스템에서 부하 분산을 통한 분산적 부채널 ON/OFF 스케쥴링 기법)

  • Yoon, Kang-Jin;Kim, Young-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.471-479
    • /
    • 2012
  • In cellular femto systems, femto Base stations(f-BSs) can be installed unnecessarily and overcrowded in small areas. This will cause an interference problem and it can impact on the capacity, blocking probability, and coverage of femtocells in the shared channel systems. In this paper, we propose a load distribution scheme by using forced handover and probabilistic subchannel scheduling policy to resolve the problem. The proposed scheme operates in distributed manner though communication with neighboring f-BSs, and includes self-detection of overcrowded area and radio resource management based on measurements. We evaluate the performance of the proposed scheme in terms of average cell throughput and average throughput per users.

Energy Efficiency Enhancement of Macro-Femto Cell Tier (매크로-펨토셀의 에너지 효율 향상)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth generation (5G) wireless networks. The heterogeneous network considered consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (BSs). The stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi- tier cellular networks. The HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this paper, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power onsumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved the Karush Kuhn Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCNs scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes.

Multi-Objective Handover in LTE Macro/Femto-Cell Networks

  • Roy, Abhishek;Shin, Jitae;Saxena, Navrati
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.578-587
    • /
    • 2012
  • One of the key elements in the emerging, packet-based long term evolution (LTE) cellular systems is the deployment of multiple femtocells for the improvement of coverage and data rate. However, arbitrary overlaps in the coverage of these femtocells make the handover operation more complex and challenging. As the existing handover strategy of LTE systems considers only carrier to interference plus noise ratio (CINR), it often suffers from resource constraints in the target femtocell, thereby leading to handover failure. In this paper, we propose a new efficient, multi-objective handover solution for LTE cellular systems. The proposed solution considers multiple parameters like signal strength and available bandwidth in the selection of the optimal target cell. This results in a significant increase in the handover success rate, thereby reducing the blocking of handover and new sessions. The overall handover process is modeled and analyzed by a three-dimensional Markov chain. The analytical results for the major performance metrics closely resemble the simulation results. The simulation results show that the proposed multi-objective handover offers considerable improvement in the session blocking rates, session queuing delay, handover latency, and goodput during handover.

Performance of 3-Dimensional Frequency Reuse Patterns and Their Application to Carrier-Aggregated Systems (3차원 주파수 재사용 패턴의 성능 및 반송파 결합을 사용하는 시스템으로의 적용 방안)

  • Sung, Jihoon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1256-1263
    • /
    • 2012
  • Assigning different frequency resources among adjacent cells, namely the frequency reuse technique can be utilized to mitigate intercell interference, which is a major cause of performance degradation in cellular systems. Since most of conventional frequency reuse patterns are limited to the two-dimensional environment, the research for the three-dimensional frequency reuse would be beneficial especially for the implementation of femto cells in downtown office buildings. We propose frequency reuse patterns in three-dimensional space and evaluate their performance of each pattern in terms of channel capacity. In particular, we show that the proposed three-dimensional frequency reuse patterns can be applied for carrier-aggregated transmission of LTE-Advanced systems. The performance of the proposed patterns is evaluated using computer simulation.