• Title/Summary/Keyword: Cellular Band

Search Result 187, Processing Time 0.026 seconds

Design of Dual Band Log-Periodic Dipole Antennas for the Cellular/IMT-2000 Band (Cellular/IMT-2000 공용 이중밴드 대수주기 다이폴 안테나 설계)

  • 최학근;오종대;김명철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1216-1224
    • /
    • 2003
  • In this paper Dual Band Log-Periodic Dipole Antenna(DLPDA), which can be used at the Cellular/IMT-2000 band, is proposed. The proposed antenna is composed of 2 of Log-Periodic Dipole Antenna(LPDA) and parasitic elements. To investigate the reliability of the proposed antenna, DLPDA is designed at the cellular/IMT-2000 band and analyzed by using the method of moment, Numerical results are compared with measured results. It is shown that although the antenna length is 70 cm, its radiation characteristics satisfied the design goals of gain, VSWR and beamwidth at the Cellular/IMT-2000 band. From these results, the proposed DLPDA is confirmed as the dual band antenna which can be used at the cellular/IMT-2000 band.

Capacity Enhancement of Uni-directional In-band Full-Duplex Cellular Networks through Co-channel Interference Cancellation

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Sun-Ae;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • As implementation of the in-band full duplex (IFD) transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co-channel interference (CCI) due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni-directional IFD (UD-IFD) communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half-duplex (HD) users. In addition, a multi-pair CCI cancellation (MP-CCIC) method combining CCIC and user pairing is proposed to improve the performance of the UD-IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD-IFD cellular network. On the other hand, when applying the proposed MP-CCIC, the capacity of the UD-IFD cellular network greatly improved compared to that of an HD cellular network.

Antenna-Diplexer Module for Cellular/SDMB Band Using LTCC Technology (LTCC 공법을 사용한 Cellular/SDMB 안테나-다이플렉서 모듈)

  • Ha, Jeung-Uk;Chang, Ki-Hun;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.774-783
    • /
    • 2007
  • This paper presents an integrated packaging antenna-diplexer module for wireless communication systems in the Cellular and SDMB band. The design and the realization of the proposed one are experimentally analyzed and discussed. It consists of a dual-resonance antenna and a diplexer with a multi-layer LTCC(${\varepsilon}_r=7.8,\;tan\;{\delta}=0.0043$) technology with integration capability and low loss. The dual-resonance antenna of the proposed module has the meander line structure for size reduction and has the shorting structure of an inverted F antenna to achieve good impedance matching. The diplexer of the proposed module was designed with the combination of low pass filter(LPF) and high pass filter(HPF). Decreasing the mutual interference between them provides a high isolation characteristic. The proposed antenna-diplexer module with dimensions of $27.5{\times}12.0{\times}2.2mm$ operates within a range from 813 MHz to 902 MHz for the cellular band and from 2,586 MHz to 2,655 MHz for the SDMB band. And the measured gain of the fabricated module is -1.96 dBi for Cellular band and -5.43 dBi for SDMB band. The parameters for the antenna-diplexer module are investigated and the several performances are discussed.

Dual Band Microstrip Antenna with Air Substrate (Air Substrate를 이용한 이중 대역 마이크로스트립 안테나)

  • Lee, Seok-Moon;Kim, Hee-Joong;Ha, Cheun-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1070-1076
    • /
    • 2007
  • In this paper, we study the characteristics of dual band microstrip antenna with the wedge-shaped radiation patch added the slot using air substrate. Wedge-shaped patch antenna with air substrate is avoided the large probe reactance associated with a thick substrate owing to the use of short probe and good impedance matching over a wide frequency range can be obtained. Slot on the antenna radiator varies the reactance component according to the employed frequency and affect the resonance freaqency of the antenna, therefore the antenna can resonate at the dual band(cellular and PCS band). The slot length and position have an effect on the bandwidth and input impedance of the antenna are optimized by simulation. From the experiment results for the fabricated antenna, -10 dB of $S_{11}$ is content with the allocated bandwidth of Cellular and PCS system and - 15 dB of cross polarization level. From the results of this paper, it has been confirmed that the proposed antenna can be used as the base station antenna fur Cellular and PCS band.

The Design and Implementation of a Multi-Band Planar Antenna for Cellular/PCS/IMT-2000 Base Station (셀룰러/PCS/IMT-2000 기지국용 다중대역 평판 안테나 설계 및 구현)

  • 오경진;김봉준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.781-787
    • /
    • 2004
  • In this paper, a novel dual and wide band aperture stacked patch antenna for Cellular/PCS/IMT-2000 base station is presented. It consists of single microstrip patch having notches along the radiating patch, two dielectric substrates and a form material. To achieve wide band characteristic, we utilize the coupling effect between the notched patch and the resonant aperture in the ground plane and by properly cutting notches on the patch, an aperture stacked patch antenna could be designed to yield dual frequency operation. By the proper choice of resonant aperture size and height of a foam material, dual and wide band characteristic could be realized the measured impedance bandwidth(1:1.5 VSWR) of designed antenna at lower band(860 MHz) reaches 77 MHz and covers the Cellular CDMA band(824∼894 MHz). The measured impedance bandwidth(1:1.5 VSMR) of the designed antenna at upper band(1,960 MHz) is about 550 MHz and covers both the PCS band(1,750∼l,870 MHz) and the for-2000 band(1,920∼2,170 MHz). Good broadside radiation with high gain(5.65∼7.4 dBi) characteristics have also been observed.

The Method to Setup the Path Loss Model by the Partial Interval Analysis in the Cellular Band

  • Park, Kyung-Tae;Bae, Sung-Hyuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • There are the free space model, the direct-path and ground reflected model, Egli model, Okumura-Hata model in the representative propagational models. The measured results at the area of PNG area were used as the experimental data in this paper. The new proposed partial interval analysis method is applied on the measured propagation data in the cellular band. The interval for the analysis is divided from the entire 30 Km distance to 5 Km, and next to 1 Km. The best-fit propagation models are chosen on all partial intervals. The means and standard deviations are calculated for the differences between the measured data and all partial interval models. By using the 5 Km- or 1 Km- partial interval analysis, the standard deviation between the measured data and the partial propagation models was improved more than 1.7 dB.

A Characteristics of Dual-Band PIFA for Mobile Phones Using H-Types Slits in the Radiators (방사부의 H형 Silt을 이용한 이동통신 단말기용 이중대역 PIFA 안테나 특성)

  • Lee Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.84-91
    • /
    • 2005
  • In this papers, we study the characteristics of dual band PIFA(Planar Inverted F antenna) for handy phones using H-type silt in the antenna radiators. Slit types on the antenna radiator vary resonance mechanism of the antenna and affect reactance component of impedance for the antenna. Therefore the antennas resonate at the dual band(cellular -band, Korea-PCS band), the bandwidth, input impedance and radiation patterns of the proposed antenna is affected by the silt length on the radiators. In order to demonstrate the validity of the proposed theory, it is implementation the antenna of the 4 types. From results for the experiment of the implementation antenna, -5 dB bandwidth of return loss is content with the allocated bandwidth of Cellular and Korea-PCS system the gains of the antenna is about -8$\~$ - 1 dB, the radiation patterns for x-polarized or y-polarized are omnidirectional pattern. From above the results of this papers, it is conclude mobile phones antenna for handy phones using this papers results.

High-temperature superconducting band-pass filters for digital cellular communication system (고온 초전도체를 이용한 이동통신 기지국용 영역통과 필터에 관한 연구)

  • J. H. Lee;Y. H. Do;J. S. Kwak;C. O. Kim;J. P. Hong;K. L. Lee;S. K. Han;K. Char
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.132-136
    • /
    • 2003
  • Extremely selective high temperature superconducting (HTS) band -pass filters were developed for the base transceiver station applications of Digital Cellular communication Service (DCS). The filters have a bandwidth of 25 MHz at a center frequency of 834 MHz. There are 12 resonators which have spiral-meander microstrip-line structures in order to reduce far-field radiations with a reasonable tunability. As a result, the size of filters is 5 mm $\times$ 17 mm $\times$ 41 mm. Device characteristics exhibited a low insertion loss of -0.4 dB with a -0.2 dB ripple and a return loss better than -10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  • PDF

Design and Implementation of Dual Band Monopole Antenna with Slot for Cellular CDMA and IMT-2000 Repeater (셀룰러 CDMA와 IMT-2000 중계기용 슬롯 구조 이중대역 모노폴 안테나의 설계 및 구현)

  • 오종대;김창일;공성신;양운근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.912-918
    • /
    • 2003
  • In this paper, we designed and implemented the dual band monopole antenna for cellular CDMA(Code Division Multiple Access) and IMT-2000(International Mobile Telecommunication 2000) repeater. The antenna was designed by using 3D simulations program, HFSS(High Frequency Structure Simulator). Electrical characteristics were measured by using HP 8720C network analyzer and measured maximum S$\_$11/ was -10.9 dB for all frequency bands of interests in Cellular CDMA and IMT-2000. Simulation results for antenna gain at 859 MHz and 2027.5 MHz were 2.38 dBi and 4.02 dBi respectively with omni directional radiation pattern. The size of implemented antenna is compact and the antenna can be produced in low cost enough for commercialization.

Compact Spatial Triple-Band-Stop Filter for Cellular/PCS/IMT-2000 Systems

  • Kim, Dong-Ho;Yeo, Jun-Ho;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.735-737
    • /
    • 2008
  • We propose a novel spatial multi-band-stop filter using modified multiple loop array elements to block electromagnetic waves or signals of mobile phones in public facilities. It operates at the following frequency bands: Korean cellular (824 MHz to 894 MHz), Personal Communication Service (PCS) (1.75 GHz to 1.87 GHz), and IMT-2000 (1.92 GHz to 2.17 GHz). Two frequency selective surfaces with modified multiple-loop elements are printed on the top and bottom of a pair-glass pane, which is a pair of glass panes with an air gap between them. A modified multiple-loop element with a meander line is used to make the size of the filter compact. The simulated and measured results show good agreement, which confirms the usefulness of the proposed tri-band spatial filter.

  • PDF