• Title/Summary/Keyword: Cell-in-cell

Search Result 56,192, Processing Time 0.07 seconds

The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology

  • Kim, Daehong;Hong, Kwan Soo;Song, Jihwan
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.

Effects of programmed cell death induction method on somatic cell development

  • Kim, Sang-Hwan
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, to analyze whether artificial regulation of apoptosis in the development of somatic cells can affect the stable growth and development of cells, 20 alpha-hydroxysteroid dehydrogenase (20α-HSD) and rapamycin were treated to induce apoptosis and autophagy in the both skin and muscle cells. Respectively, and 3-methyladenine was supplemented to inhibit cell death. Our results show that stimulation with rapamycin activated autophagy in both types of cells, but increased apoptosis more than autophagy in the case of skin cells. These results indicate that there was a difference in the expression of survival factors and cell development depending on the type of cell. In particular, in the expression of autophagy-related gene (MAP1LC3A) was higher than that of Casp-3, an apoptosis factor. Furthermore, cell development was the highest in all cell groups cultured by artificially inducing autophagy, however the lowest in the apoptosis-inhibited group. Especially, the noteworthy result of this study was that when apoptosis was induced using 20α-HSD, it was possible to induce apoptosis in both skin and muscle cells. Therefore, the main point of this study is that apoptosis induced during cell culture plays a pivotal role in cell remodeling.

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells

  • Park, Sung-Won;Won, Kyung-Jong;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Lee, Hyeon-Woo;Kim, Bo-Kyung;Lee, Byeong-Han;Kim, Jin-Hoi;Kim, Dong-Ku
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2012
  • HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.

Immortalization of Rat Kidney Glomerular Mesangial Cell and Its Coculture with Glomerular Epithelial Cell

  • Toshinobu Kida;Sachi Fujishima;Masatoshi Matsumra;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2000
  • Mesangial cell has several key roles in thee control of glomerular function: it partocipates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitble cell lines have established yet. We here reported the immortalization of rat kidney glomeruar mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The reslts showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial dells was suppressed by epithelial cell, but the growth of epithelisl cells was enhanced by mesangial cells. Moreover, Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.

  • PDF

Inhibitory Effects of Magnesuim Carbonate on Cytotoxicity, Genotoxicity, Mutagenicity, and Cell Transformation by Nickel Subsulfide (Nickel Subsulfide의 세포독성, 유전독성, 변이원성 및 세포변이에 대한 Magnesuim Carbonate의억제효과)

  • 하은희;홍윤철;윤임중
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 1999
  • In order to know the inhibitory effect of magnesium carbonate(MgCO3) on cytotoxicity, DNA damage, mutagenicity, and cell transforming ability of nickel subsulfide, the inhibition of cell proliferation, DNA-protein crosslinks formation (DPC), HGPRT point mutation, and cell transformation were evaluated. Nickel subsulfide(Ni3S2) and magnesium carbonate as insoluble compounds were used for this study. BALB/3T3 cell, CHO-K1 cell, and C3H10T1/2 cell were used in this experiment. Exposure concentration of nickel subsulfide was 1 $\mu\textrm{g}$/ml. The concentrations of magnesium carbonate in this study were 0.6 $\mu\textrm{g}$/ml, 1.2 $\mu\textrm{g}$/ml, 2.4 $\mu\textrm{g}$/ml and the molar ratio of magnesium to nickel when exposed simultanously were 0.5, 1.0 and 2.0 respectively. The results were as follows; 1. Magnesium carbonate reduced the inhibitory effect of nickel subsulfide on cell proliferation. 2. Magnesium carbonate also reduced the effect of nickel subsulfide on DNA-protein crosslinks formation. 3. HGPRT point mutagenicity of nickel subsulfide was reduced when magnesium carbonate treated simultaneously. 4. Magnesium carbonate reduced cell transforming ability of nickel subsulfide. Conclusively, nickel subsulfide showed cytotoxicity, cell transforming ability, and mutagenicity strongly and magnesium carbonate may have protective roles in these nickel effects.

TAGLN2-mediated actin stabilization at the immunological synapse: implication for cytotoxic T cell control of target cells

  • Na, Bo-Ra;Jun, Chang-Duk
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.369-370
    • /
    • 2015
  • Actin dynamics is critical for the formation and sustainment of the immunological synapse (IS) during T cell interaction with antigen-presenting cells (APC). Thus, many actin regulating proteins are involved in spatial and temporal actin remodeling at the IS. However, little is known whether or how actin stabilizing protein controls IS and the consequent T cell functions. TAGLN2 − an actin-binding protein predominantly expressed in T cells − displays a novel function to stabilize cortical F-actin, thereby augmenting F-actin contents at the IS, and acquiring leukocyte function-associated antigen-1 activation following T cell activation. TAGLN2 also competes with cofilin to protect F-actin in vitro and in vivo. During cytotoxic T cell interaction with cancer cells, the expression level of TAGLN2 at the IS correlates with the T cell adhesion to target cancer cells and production of lytic granules such as granzyme B and perforin, thus expressing cytotoxic T cell function. These findings identify a novel function for TAGLN2 as an actin stabilizing protein that is essential for stable immunological synapse formation, thereby regulating T cell immunity. [BMB Reports 2015; 48(7): 369-370]

Characterization of Cell Wall Proteins from the soo1-1/ret1-1 Mutant of Saccharomyces cerevisiae

  • Lee, Dong-Won;Kim, Ki-Hyun;Chun, Se-Chul;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.219-223
    • /
    • 2002
  • In order to investigate the function of Soo1p/${\alpha}$-COP during post-translational modification and intra-cellular transport of cell wall proteins in Saccharomyces cerevisiae, cell wall proteins from the soo1-1/ret1-1 mutant cells were analyzed. SDS-PAGE analysis of biotin labeled cell wall proteins suggested that the soo1-1 mutation impairs post-translational modification of cell wall proteins, such as N- and/ or Ο-glycosylation. Analysis of cell wall proteins with antibodies against ${\beta}$-1,3-glucan and ${\beta}$-1,6-glucan revealed alteration of the linkage between cell wall proteins and ${\beta}$-glucans in the soo1-1 mutant cells. Compositional sugar analysis of the cell wall proteins also suggested that the soo1-1 mutation impairs glycosylation of cell wall protein in the ER, which is crucial for the maintenance of cell wall integrity.

Establishment and Characterization of Permanent Cell Lines from Oryzias dancena Embryos

  • Lee, Dongwook;Kim, Min Sung;Nam, Yoon Kwon;Kim, Dong Soo;Gong, Seung Pyo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.177-185
    • /
    • 2013
  • The development of species-specific fish cell lines has become a valuable tool for biological research. In recent years, marine medaka Oryzias dancena has been recognized as a good experimental model fish but there are no reports of establishment of cell lines from this fish. In this study, two cell lines from O. dancena blastula embryos were established from 41 total trials (4.9%). The two cell lines displayed typical in vitro morphology and have been cultured for >121 passages, which corresponds to 293 days. The doubling times of the cell lines were 29.84 and 28.59 h, respectively, and both possessed the potential to expand in a clonal manner, albeit with significant differences between the two cell lines. The absence of any of the four main medium supplements; i.e., fish serum, fetal bovine serum, basic fibroblast growth factor, and medaka embryo extract, significantly inhibited growth. The proportion of cells possessing normal chromosome number was 45% and 46.7% of the cell lines, respectively. Taken together, two cell lines that proliferate continuously were established from marine medaka and these cell lines may provide a basic tool for characterizing the unique features of this fish species.

Life Cycle Analysis of Stem Cell Technology Based on Diffusion Model : Focused on the Research Stage (확산 모형을 이용한 줄기 세포 기술의 수명 주기 분석 : 연구 단계를 중심으로)

  • Jang, In-young;Hong, Jungsik;Kim, Taegu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.488-498
    • /
    • 2015
  • Research on stem cells can be divided into three categories : pluripotent stem cell, adult stem cell, and induced pluripotent stem cell. Technology life cycle (TLC) on research stage is analyzed for the three stem cell categories based on diffusion model. Three diffusion models-logistic, Bass, and Bass model with integration constant (BMIC)-are applied to the number of articles related to each stem cell category in SCOPUS lists. Two different parameter estimation methods is used for each of logistic and Bass model. Results show that (1) the current year, 2015, lies in growth period at pluripotent stem cell and adult stem cell, and lies in growth period or maturity period at induced pluripotent stem cell. (2) Model fitness is the highest at BMIC model. (3) Imitation effect works best at the research area of induced pluripotent stem cell.

A Cell-to-Cell Fast Balancing Circuit for Lithium-Ion Battery Module (리튬이온 배터리 모듈을 위한 단일셀간 고속 밸런싱 회로)

  • Pham, Van-Long;Basit, Khan Abdul;Nguyen, Thanh-Tung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.7-8
    • /
    • 2015
  • In this paper a cell-to-cell fast charge balancing circuit for the Lithium-Ion battery module is proposed. In the proposed topology the energy in a high voltage cell is transferred directly to a low voltage cell through the operation of the dc-dc converter. Furthermore, the charge balancing can be performed regardless of the battery operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and detect the inferior cell thereby protecting the battery module from failure. In order to demonstrate the performance of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shorter compared with those of other methods.

  • PDF