• Title/Summary/Keyword: Cell-free DNA

Search Result 277, Processing Time 0.031 seconds

Effects of Oxidative Stress on Apoptosis and Antioxidant Enzyme Levels

  • Kim, Choonmi;Lee, Ji-Young
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.402-407
    • /
    • 1996
  • Effects of oxidative stress on the induction of apoptosis and the activity of antioxidant enzymes were investigated in HL-60 cells using $H_2O$$_2$and cisplatin which generate oxygen species in the cell. Various concentrations of oxidants were treated to cells and at different incubation time, cells were harvested for assays. Cell viability, morphology by propidium iodide staining and DNA fragmentation by agarose gel electrophoresis were observed to determine whether they induce apoptosis. The activity of antioxidant enzymes such as superoxide dismutase and catalase was also measured to evaluate the cellular response to the oxidative damage. The results are as follows: $H_2O$$_2$ induced apoptosis at 10 $\mu$M after 6h incubation, while it took 12h for cisplatin. Both oxidants induced the superoxide dismutase activity at a tolerable low concentration. However, at a concentration which causes apoptotic cell death, the enzyme level was dropped markedly at first and then recovered to the normal level after which it declined again, probably due to cell death. On the other hand, changes in the activity of catalase were not significant at most concentrations except the statistically significant decrease at 24h after 10 $\mu$M-$H_2O$$_2$treatment. In this study, $H_2O$$_2$- and cisplatintreated cells showed similar results in apoptotic response and enzyme activities, suggesting that anticancer activity of cisplatin may be related, at least in part, to the production of oxygen free radicals.

  • PDF

Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing

  • Park, Bo Min;Roh, Jae-il;Lee, Jaehoon;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.264-269
    • /
    • 2018
  • Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors $p16^{Ink4a}$ (Cdkn2a, cyclin-dependent kinase inhibitor 2a), $p19^{Arf}$ (an alternative reading frame product of Cdkn2a,), and $p27^{Kip1}$ (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The $p16^{Ink4a}$ and $p19^{Arf}$ knockout mice were generated via transcription activator-like effector nucleases (TALENs), and $p27^{Kip1}$ knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA.

Nucleotide Analysis of Phaffia rhodozyma DNA Fragment That Functions as ARS in Saccharomyces cerevisiae

  • Chung, Hee-Young;Hong, Min-Hee;Chun, Young-Hyun;Bai, Suk;Im, Suhn-Young;Lee, Hwanghee-Blaise;Park, Jong-Chun;Kim, Dong-Ho;Chun, Soon-Bai
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.650-655
    • /
    • 1998
  • The chromosomal DNA fragment from Phaffia rhodozyma CBS 6938 which is able to autonomously replicate in the yeast Saccharomyces cerevisiae was cloned on an integrative URA3 plasmid. Its minimal fragment exhibiting autonomously replicating activiy in the S. cerevisiae gave a higher frequency transformation efficiency than that found for centromere-based plasmid, and enabled extrachromosoma1ly stable transmission of the plasmids in one copy per yeast cell under non-selective culture condition. The 836-bp DNA element lacked an ORF and did not contain any acceptable match to an ARS core consensus. Sequence analysis, however, displayed a cluster of three hairpin-Ioop-sequences with individual $\triangle {G_{25}}^{\circ}C$ free energy value of -10.0, -17.5, and -17.0 kcal. $mor^{-l}$as well as a 9-bp sequence with two base pair mismatches to the S. cerevisiae/E. coli gyrase-binding site. This 836-bp sequence also included one 7-bp sequence analogous to the core consensus of centromeric DNA element III (CDEIII) of S. cerevisiae, but CDEIII-like 7 bp sequence alone did not give a replicative function in this yeast.

  • PDF

THE EFFECT OF SODIUM FLUORIDE AND SODIUM ORTHOVANADATE ON OSTEOBLASTIC CELL LINE MC3T3-E1 CELLS (Sodium fluoride와 Sodium orthovanadate가 조골세포주 MC3T3-E1에 미치는 영향에 관한 연구)

  • Kim, Won-Jin;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.97-111
    • /
    • 1991
  • It is the aim of this study to investigate the effects of sodium fluoride and sodium orthovanadate upon the proliferation and activity of the osteoblast (MC3T3-E1 cells). MC3T3-E1 cells were cultured in $\alpha-MEM$ containing $10\%$ FBS and various concentration of sodium fluoride and sodium orthovanadate was appended to serum free media. DNA synthesis was examined through the $[^3H]$ thymidine incorporation into DNA. Collagen synthesis was examined through the $[^3H]$ proline incorporation into collagenase digestible protein and noncollagen protein. The following results were drawn; 1. Sodium fluoride stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M$ to $10{\mu}M$ (P < 0.005). 2. Sodium orthovanadate stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M\;to\;8{\mu}M$, however showed diminution at $10{\mu}M$ (P < 0.001). 3. Sodium fluoride and sodium orthovanadate stimulated the percent collagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M$ to $10{\mu}M$ (P < 0.001). 4. Sodium fluoride and sodium orthovanadate stimulated the noncollagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M\;to\;10{\mu}M$ (P < 0.001). In conclusion, sodium fluoride and sodium orthovanadate stimulate the proliferation and activity of osteoblast by stimulation of DNA synthesis and collagen and noncollagen synthesis in osteoblast.

  • PDF

6'-O-Galloylpaeoniflorin Protects Human Keratinocytes Against Oxidative Stress-Induced Cell Damage

  • Yao, Cheng Wen;Piao, Mei Jing;Kim, Ki Cheon;Zheng, Jian;Cha, Ji Won;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.349-357
    • /
    • 2013
  • 6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide ($H_2O_2$)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, $H_2O_2$-generated intracellular reactive oxygen species (ROS), the superoxide anion radical ($O_2^-$), and the hydroxyl radical (${\cdot}$OH). GPF also safeguarded HaCaT keratinocytes against $H_2O_2$-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.

Effect of Saponin with Antioxidant Activity on Matrix Metalloproteinase in Human Dermal Fibroblasts (항산화 효능을 가진 사포닌이 사람섬유아세포에서 기질 금속 단백질 분해효소에 미치는 영향)

  • Park, Hye-Jung;Kim, Moon-Moo;Lee, Dong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1266-1273
    • /
    • 2011
  • Saponin is a main component of ginseng widely known as an oriental traditional medicinal ingredient. A variety of biological effects of saponin has been reported, but its action related to skin regeneration has remained unclear so far. In this study, the effect of saponin on matrix metalloproteinase as well as its antioxidant effect in cell free system was examined in human dermal fibroblasts. First of all, as a result of investigating the effect of saponin on cell viability using MTT assay, it was shown to increase cell viability below 10 ${\mu}g$/ml, but it also showed cytotoxicity above 25 ${\mu}g$/ml. The antioxidant effect of saponin was exerted by inhibition of $H_2O_2$ in addition to reducing power above 1 ${\mu}g$/ml. In particular, saponin showed a protective effect on DNA oxidation. Furthermore, it was observed that saponin activates MMP-2 and increases MMP-1 activity in gelatin and casein zymography analyses, respectively, indicating that saponin could have potential a therapeutic agent for anti-aging and skin regeneration.

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition 5. Effects of Depolymerized Alginate on Body Weight, Organ, Pancreatic and Small Intestinal Composition, and Small Intestinal Microvilli Structure in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 5. 랫드의 체중, 장기, 췌장과 소장의 성분 및 소장융모의 미세구조에 미치는 저분자 Alginate의 영향)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To examine functionality of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on gastrointestinal physiology, the changes of body weight, organ weight and length, pancreatic and small intestinal composition, and light microscopy (LM) observation of small intestinal microvilli's appearances were checked in the rats. Rats were fed diets containing $1\%, 5\%, and 10\%$ of each depolymerized alginate (HAG-10, HAG-50, HAG-100) and alginate for 35 days, The feeding of 5 and $10\%$ HAG-50 and $10\%$ alginate diets for 35 days significantly depressed the body weight gain, but increased the length and weight of the small intestine and cecum in rats (p<0.01). Pancreatic protease activity was decreased significantly (p<0.01) in all groups except lo/o of HAG-10 diets, but the protein content increased in all groups, However, pancreatic amylase and lipase activities as well as DNA and RNA content were not significantly different. The small intestinal protein and the DNA content were the highest in diets fed $5\%$ HAG-50; RNA content increased significantly (p<0.01) in all groups except in the fiber-free diets. Light microscopy (LM) observation showed growth of small intestinal microvilli with numerous ridges; the multiplication of the convolution goblet cells in rats fed with diets containing $5\%$ of HAG-50 were more than others group.

  • PDF

Production of hGM-CSF by transformed rice cell suspension culture

  • Sin, Yun-Ji;Hong, Sin-Yeong;Kim, Nan-Seon;Kim, Yeong-Suk;Lee, Jae-Hwa;Gwon, Tae-Ho;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.206-209
    • /
    • 2001
  • Recombinant human GM -CSF was expressed and secreted from transgenic rice cell suspension cultures in its biologically active form. This was accomplished by transforming rice callus tissues with an expression vector, pMYN44. containing the hGM -CSF cDNA. Regulated expression and secretion of hGM -CSF from this vector achieved using the promoter, signal peptide, and terminator from a rice alfa-amylase gene Amy3D. The Amy3D gene is expressed in response to sugar deprivation. The recombinant hGM -CSF was expressed from the transgenic rice cell culture on the sugar-free medium as a yield of about 110 mg/L in the culture filtrate, which was determined by ELISA. Biological activity of hGM-CSF was confirmed by measuring the proliferation of the hGM -CSF dependent TF -1 cells.(This work was supported by a grant from the NRL program of the Korean Ministry of Science and Technology. Shin, Y.- J.. Lee. J.-H and Kwon, T.-H. have been supported by BK21 program from the Korean Ministry of Education)

  • PDF

Expression of Taurine Transporter in Cell Lines and Murine Organs (세포주와 마우스 조직에서 타우린수송체의 발현분석)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Toxic Activities of the Oxidant Chromate in Culture Cells (산화성 크롬의 배양세포에서의 독성작용)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.1-9
    • /
    • 1998
  • The ROS-producing potency of chromium compounds of several oxidation states were determined in the H4 cells. $K_2Cr_2O_7$ as Cr (VI), synthetic Cr (V) compounds and Cr (III) as TPP produced high level of ROS. However, ROS values of Cr-picolinate as Cr (III), CrCl$_2$, CrCI$_2$, were almost equal to the control. The effects of physiological antioxidants compounds which react with free radicals were examined for their effects on chromate-induced production of reactive oxygen species (ROS) in A549 cells after the addition of $K_2Cr_2O_7$. The compounds used were vitamin C (ascorbate), vitamin E ($\alpha$-tocopherol), superoxide dismutase (SOD) and catalase. The preincubation of ascorbate (200uM) with A549 cells for 20hr resulted in a significant reduction of hexavalent chromate(100uM) induced ROS. However, there is no effects of preincubation of the cells with vitamin E succinate (10 and 20uM, 20hr) on the ROS production. Also, the effects of Cr (VI) on the cell cycle of A549 cells was measured by adding the DNA intercalating agent, propidium iodide. S phase of the cell cycle was increased by the chromium (VI) compounds up to 20uM indicating toxicity or possible mitogenic action of the cell. The shoulder in Go/G1 phase at 20uM Cr (VI) with 24 hr treatment indicates apoptosis.

  • PDF