• Title/Summary/Keyword: Cell wall thickness

Search Result 121, Processing Time 0.025 seconds

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by ECT Method

  • Park, Kwang-June;Chun, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.175-180
    • /
    • 1997
  • It has been known that eater-side corrosion of fuel rods in nuclear reactor is accompanied with the metallic loss of wall thickness and hydrogen pickup in the fuel dadding tube. The fuel dad corrosion is one of the major factors to be controlled to maintain the fuel integrity during reactor operation. An oxide later thickness measuring device equipped with ECT probe system was developed by KAERI, and whose performance test was carried out in NDT(Non-destructive Test) hot-cell or PIE(Post Irradiation Examination) Facility. At first, the calibration/performance test was executed for the unirradiated standard specimen rod fabricated with several kinds of plastic thin films whose thickness ore predetermined, and the result of which showed a good precision within 10% of discrepancy. And then, hot test us peformed for the irradiated fuel rod selectively extracted from J44 fuel assembly discharged from Kori Unit-2. The data obtained with this device were compared with the metallographic result obtained from destructive examination in PIEF hot-cell on the same fuel rod to verify the validity of the measurement data.

  • PDF

Slab Thickness Calculations on Hot Cell

  • Ha, Yung-Joon;Kim, Seong-Yun;Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.26-36
    • /
    • 1978
  • Numerical computations of radioactivities and decay energies in a spent fuel have been carried out for designing of a hot cell. Optimum wall and window thicknesses that can preserve spent fuel rods for experimental purposes are estimated with burnup rate of 33,000 MWD/T(U) which is nearly maximum from a pressurized water reactor such as the Go-Ri Unit 1. Before putting the spent fuels into a hot cell, it is assumed for thickness estimates of shield materials that they are cooled in a storage tay for several lime intervals. Considered are various types of shield materials through which changing the distances from a source to an observation point is also made.

  • PDF

Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

  • Lee, Kyounghwan;Nah, Seung-Yeol;Kim, Eun-Soo
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Background: A leaf cuticle has different structures and functions as a barrier to water loss and as protection from various environmental stressors. Methods: Leaves of Panax ginseng were examined by scanning electron microscopy and transmission electron microscopy to investigate the characteristics and development of the epicuticular structure. Results: Along the epidermal wall surface, the uniformly protuberant fine structure was on the adaxial surface of the cuticle. This epicuticular structure was highly wrinkled and radially extended to the marginal region of epidermal cells. The cuticle at the protuberant positions maintained the same thickness. The density of the wall matrix under the structures was also similar to that of the other wall region. By contrast, none of this structure was distributed on the abaxial surface, except in the region of the stoma. During the early developmental phase of the epicuticular structure, small vesicles appeared on wallecuticle interface in the peripheral wall of epidermal cells. Some electron-opaque vesicles adjacent to the cuticle were fused and formed the cuticle layer, whereas electron-translucent vesicles contacted each other and progressively increased in size within the epidermal wall. Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle) acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Ultrasonographic Findings of Transitional Cell Carcinoma in a Dog (개에서 방광내 이행세포암종의 초음파학적 진단)

  • 엄기동;오태호;장광호;이영원;장동우;이기창;윤정희
    • Journal of Veterinary Clinics
    • /
    • v.19 no.2
    • /
    • pp.268-271
    • /
    • 2002
  • Transitional cell carcinoma(TCC) was identified by cytological and ultrasonographic findings in an 11-year-old, intact female Yorkshire terrier with intermittent hematuria for three years. In color-doppler ultrasound images there was marked irregular wall thickness of the bladder surface and well-defined hyperechoic focal lesions within the mass. Active vascular response was observed in the surroundings of hyperechoic lesions.

Inhibition of cell wall synthesis in Cryptococcus neoformans and decrease of skin allergy induced with Alternaria alternata in mouse model by a chitinase from an inky cap (먹물버섯 키틴질 분해효소에 의한 인체유해성 Cryptococcus neoformans 세포벽 생성억제 및 Alternaria alternata에 기인한 생쥐의 피부알레르기의 감소)

  • Kang, Yuri;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.226-229
    • /
    • 2016
  • The growth of two different fungal species, human pathogenic Cryptococcus neoformans and plant pathogenic Alternaria alternata were inhibited by a chitinase (Chi2) expressed in the autolysing tissue of Coprinellus congregatus. The cell wall thickness was reduced (up to 32%) in C. neoformans compared with that of normal cell, and polysaccharide fibers located outside of the cell wall were also severely removed. The hyphal growth of A. alternata on agar plate was stopped by the enzyme. The allergic inflammation induced by A. alternata was reduced by the enzyme reaction when compared with untreated control in a mouse model.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

A Study on the Injection Molding Technology by Micro Multi-Square Strucrure Mold (다중 미세 각주 구조물의 사출성형기술 연구)

  • 제태진;신보성;박순섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1061-1064
    • /
    • 1997
  • Micro injection molding technology is very important fiw mass product of micro structures or micro parts. And, it is so difficult that the molding technology of micro pole or thin wall(barrier rib) structures with high aspect ratio. In this stud). \vc intend to research on the basic technology of micro wall structure part:< with high aspect ratio by the inject~on moldins method. The mold for esperimenrs with micro multi-square structures was made by L, I(;A process. One square polc's size is 157 157pm. height 50011111. And the distance of each poles is 5011n1. 7'hus. molding products will be for~nctl like as the net structure with thin wall of about 50pn thickness.(aspect ratio 10) Ihrough the e~lxriment. \be obtained the prociuctr of micro multi-square slructure with bout 37.000 cell per a piece. 'Ihe micro injection molding process technolog for thin wall by multi-square structure mold was analy~cd.

  • PDF

A Study on the Forming Process of Honeycomb Core by Finite Element Analysis (유한요소해석에 의한 하니컴 코어의 성형공정에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2011
  • In this paper, research on the manufacturing technology of hexagonal structure core is investigated. Also the optimal forming process of the honeycomb core is developed and the rolling process is analyzed using finite element code, $DEFORM^{TM}$-3D. The standard honeycomb has a uniform hexagonal structure defined by the material, cell size, cell wall thickness and bulk density. Honeycomb core products can be made from any thin, flat material. The most common cell configuration is the hexagon but there are many other shapes for special applications. Because of the precision shape and the thin thickness, the honeycomb core is not easy to manufacture in the metal forming process. Through this study it was confirmed that after the rolling process, the section of honeycomb close to the standard shape can be obtained. This result is reflected to the manufacturing process design for the honeycomb core.